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1 Need for Formal Natural Multi-level Type Systems

Interoperability needs natural techniques to deal with levels of types. To han-
dle (non-local) interoperability, formality (for reliability and predictability),
naturality (for reality) and multi-level types (for types of types) are all re-
quired. Categorical methods should replace classical models because models
are local and interoperability is non-local. Categorical methods provide for-
mal definitions of levels (as categories), mappings between levels (functors
between categories) and comparison of one mapping between levels with an-
other (natural transformation between functors). Categorical techniques are
also natural: an arrow within a category is defined as unique up to natural
isomorphism.

In areas such as ontologies an informal approach has been taken to nat-
urality which can follow the categorical approach in style, if not in complete
formality. Thus in enterprise ontology three levels may be defined: construc-
tion model, process/information model and action model [5]. Such ontologies
are defining the existence of an object in the context of multiple levels, which
is close to the spirit of category theory. In object-based applications MDA
(Model-Drive Architecture) has been developed, which separates business and
application logic from the underlying platform technology [13]. MDA is based
on MOF (Meta-Object Facility) with considerable bias towards UML. An aim
of MDA is platform-independence of object-based applications, rather than
interoperability between general systems.

Category theory has been used before in information system applications.
[7] used the monoid calculus in an attempt at standardising the querying



2 Nick Rossiter et al

of different collection types. [10] applied sketches to entity-relationship and
relational modelling and [6] to object databases. None of these approaches
though have been multi-level. Sketches are also strictly outside category theory
as they permit diagrams that do not commute but they may be mapped onto
categories by a model functor.

One of the most important features of category theory is adjointness, which
gives a degree of measurement of the extent to which the mappings between
two categories are equivalent [3]. If the arrows between the categories are func-
tors F,G, then the reverse logic gate F a G is conventionally used to represent
adjointness. It is the phenomenon of naturalness. F is left adjoint to G and
G is right adjoint to F . The unit of adjunction η and counit of adjunction ε
measure the extent to which the result from composing the functors differs
from the starting point: ηl is the unit of adjunction 1l −→ GF (l) and εr is
the counit of adjunction FG(r) −→ 1r.

2 Multi-level Data Structures

The four-level architecture in Figure 1 has orthogonal types with the relation-
ships between the levels expressed as categorical adjunctions, as already ap-
plied to structures in GRID data processing [9]. Categorical adjunctions relate
one level to another. The relationship between levels is measurable by the unit
of adjunction. For instance the adjunction Policy a MetaMeta indicates that
the free functor Policy is left adjoint to the underlying functor MetaMeta.
The unit of adjunction is given by ηcpt : 1cpt −→ MetaMeta ◦ Policy(cpt).
The terms used have their normal meaning. In the downward direction, a
collection of data structuring concepts (abstractions) are mapped through
policies to a collection of constructions (for example classes, tables) which
are in turn mapped through organisation to a collection of data types (for
example, schema definitions) which are finally mapped through instantiation
to named data values. In the opposite direction, the named data values are
mapped through classification to schema types, which are in turn mapped
through metadata to constructions and through metameta data to concepts.

3 Basis for Interoperability

As mentioned earlier, there are three areas of interoperability that our ar-
chitecture must satisfy: data structures, constraints and data manipulation.
Each is covered in turn.
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Fig. 1. Interpretation of Levels as Natural Schema in General Terms
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Fig. 2. Comparison of Mappings in two Systems

3.1 Natural Transformation as Data Structures

In category theory four levels are needed to define an arrow as unique up
to natural isomorphism: 1) object or identity arrow (within a category),
2) category (comparing objects), 3) functor (comparing categories) and 4)
natural transformation (comparing functors). No more levels are required.

The relationships between one four-level architecture and another can be
constructed as in Figure 2, the expanded view of Figure 1. Here for simplicity
the mappings are viewed in one direction only. Two systems are compared,
one involving categories CPT, CST, SCH and DAT, the other CPT, CST′,
SCH′ and DAT′, representing concepts (CPT), constructs (CST), schema
(SCH) and data (DAT) from Figure 1. CPT is the same in both systems
as there is one universal type for concepts. As usual the functors relate the
categories. We have now though added natural transformations to relate the
mapping between one functor and another. It needs to be emphasised that
none of these categories are discrete: all have an internal arrow-based structure
so the natural transformations are non-trivial [14]. The functors need to be
of the same variance and involve categories of the same underlying type for
a meaningful natural transformation to exist between them. This is the case
for α, β and γ: the functors are all contravariant as described later and each
natural transformation involves two underlying categorical types.
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An arrow comparing natural transformations is itself a natural transfor-
mation. Some categorists use an older terminology with degrees of ‘cell’ and
describe the identity arrow as 0-cell, an arrow in a category as 1-cell and an
arrow between arrows as 2-cell [11]. An arrow from one natural transforma-
tion to another gives a composition of the natural transformations, not a new
level (([3], 1st ed., at p.85); [15]). This means that four levels are needed to
give the natural closure [9].

It may be asked what the levels are going to comprise and what is the
nature of the mapping between the levels. Are these constructions essentially
arbitrary or do they have definitions, which naturally fall into place? Fortu-
nately the latter seems to apply if we are working in category theory with its
property of adjointness. Lawvere [12] in his study of adjointness showed that
the relationship between intension and extension is contravariant, indicating
that the mapping from the category representing the extension, say DAT, to
the category representing the intension, say SCH, is from codomain in DAT
to domain in SCH and domain in DAT to codomain in SCH.

For matching across the levels in a contravariant manner, the intension
SCH should be defined with arrows of the form, name −→ type, and the
extension DAT with arrows of the form: value −→ name. Both these arrows
are functions since associated with each value is one name and associated with
each name is one type. Mapping from extension to intension then maps the
codomain name in DAT onto the domain name in SCH and the domain value
in DAT onto the codomain type in SCH. This mapping effectively embeds
values in types in the context of a name.

The alternative covariant mapping would be from domain to domain and
codomain to codomain. The arrow in SCH then needs to be reversed to
name −→ value for the two levels to be related. However, name −→ value is
not a function so a covariant functor from DAT to SCH lacks naturality.

The four levels of Figure 2 can now be viewed as the two intension-
extension pairs in Figure 3. The pairs are for CPT/CST (concepts/constructs)
and SCH/DAT (schema/data). For interoperability purposes, it has been
shown by the fundamental nature of category theory that four levels are suf-
ficient for all purposes [16]. Further levels are possible but unnecessary. To
maintain the coherence of the present approach it would be necessary to go
up to six levels as the next step to maintain the intension-extension pairings.

The table in Figure 4 shows the four levels of concepts, constructs, schema
and data with the functors between them of P ′ (metameta), O′ (meta) and
I ′ (classify). The arrows shown for the functors indicate the contravariant
nature of the mapping with domain to codomain and codomain to domain.
The three examples, from left to right, are for a property, aggregation with
relational tables and encapsulation with an abstract data type (ADT). The
latter shows the mapping from a binary-tree object named aTree through the
class BST and the ADT construction to the encapsulation concept.
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3.2 Adjoints for Constraints

In category theory there is a unique solution if adjointness holds between
two functors as mentioned earlier. The construction can be readily extended
to handle four levels, shown in Figure 5, as the composition of adjoints is
natural. In Figure 5, with categories and functors as in Figure 3, there are six
adjoints [9], one for each functor and its mapping in the opposite direction
(1-3), one for each pair of adjacent functors and its opposite (4-5) and one for
all three functors composed together and its opposite (6). These adjoints are
defined in detail in the following six expressions:

< P, P ′, ηcpt, εcst >: CPT −→ CST (1)

ηcpt is the unit of adjunction 1cpt −→ P ′P (cpt) and εcst is the counit of
adjunction PP ′(cst) −→ 1cst

< O,O′, η̄cst, ε̄sch >: CST −→ SCH (2)

η̄cst is the unit of adjunction 1cst −→ O′O(cst) and ε̄sch is the counit of
adjunction OO′(sch) −→ 1sch

< I, I ′, ¯̄ηsch, ¯̄εdat >: SCH −→ DAT (3)

¯̄ηsch is the unit of adjunction 1sch −→ I ′I(sch) and ¯̄εdat is the counit of
adjunction II ′(dat) −→ 1dat

< OP,P ′O′, P ′η̄cstP • ηcpt, ε̄sch •OεcstO
′ >: CPT −→ SCH (4)

P ′η̄cstP • ηcpt is the unit of adjunction 1cpt −→ P ′O′OP (cpt) and ε̄sch •
OεcstO

′ is the counit of adjunction OPP ′O′(sch) −→ 1sch

We have retained the symbol • indicating vertical composition [11] as dis-
tinct from horizontal composition indicated by the symbol ◦ which is normally,
as here, omitted altogether.

< IO,O′I ′, O′¯̄ηschO • η̄cst, ¯̄εdat • Iε̄schI ′ >: CST −→ DAT (5)

O′¯̄ηschO • η̄cst is the unit of adjunction 1cst −→ O′I ′IO(cst) and ¯̄εdat •
Iε̄schI ′ is the counit of adjunction IOO′I ′(dat) −→ 1dat

< IOP,P ′O′I ′, P ′O′¯̄ηschOP • P ′η̄cstP • ηcpt,
¯̄εdat • Iε̄schI ′ • IOεcstO

′I ′ >: CPT −→ DAT (6)

P ′O′¯̄ηschOP • P ′η̄cstP • ηcpt is the unit of adjunction
1cpt −→ O′I ′IO(cpt) and ¯̄εdat •Iε̄schI ′ •IOεcstO

′I ′ is the counit of adjunction
IOO′I ′(dat) −→ 1dat
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Fig. 3. Defining the Four Levels with Contravariant Functors and Intension-
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Level Template Property Relational Data-
base (aggrega-
tion)

Abstract Data
Type (encapsula-
tion)

CPT name −→ type attribute −→
property

table −→ aggre-
gation

ADT −→ encap-
sulation

P ′ ↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖
CST value −→ name registration no

−→ attribute
birth type −→ ta-
ble

BST −→ ADT

O′ ↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖
SCH name −→ type car reg −→ regis-

tration no
birth record −→
birth type

aTree −→ BST

I ′ ↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖
DAT value −→ name ’x123yng’ −→

car reg
<’Smith’, 25 mar
1980, ’Torquay’ >
−→ birth record

instance of tree
(nodes/links) −→
aTree

Fig. 4. Examples of Levels in the Four-Level Architecture

Fig. 5. Composition of Adjoints is Natural

The expressions above specify the conditions to be satisfied if adjointness
occurs in all possible cases in Figure 5. From these constraints we derive values
for the various units of adjunction η and counits of adjunction ε. If a unit of
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adjunction is ⊥, that is for example 1cpt = P ′P (cpt), then the application
of functors P and P ′ in turn returns the initial object (1cpt). If a counit of
adjunction is >, that is for example PP ′(cst) = 1cst then the application
of functors P ′ and P in turn returns the terminal object (1cst). These are
special cases. In other cases of adjointness η measures retrospectively the
difference between the starting and finishing points after applying in turn the
free and underlying functors. ε measures the difference between the starting
and finishing points after applying in turn the underlying and free functors.

3.3 Natural Calculus for Data Manipulation

Looking at Figure 2, we have three types of mapping: within a category (for
instance from a name to a value), from one category to another (for instance
the functor P ′ from CPT to CST′) and from one functor to another (for
instance the natural transformation α from P to P ′). Following the construc-
tive principles of category theory, the composition of these arrows is natural,
giving rise to a natural calculus first expounded by Godement [8] and now
available at ([3], 1st ed., pp 94-97) in the form of rules governing composition.

With natural closure a categorical approach ensures that the various ar-
rows of different types can be composed associatively with each other, irre-
spective of their level. Equations representing an equality of paths, can be
solved for unknown components that can be determined from an evaluation
of the known properties. For instance in comparing methods with the path
IOP from CPT −→ CST −→ SCH −→ DAT defining one approach, then
the path I ′O′P ′ from CPT −→ CST′ −→ SCH′ −→ DAT′ might define an
alternative approach if P ′ maps onto constructs in the category CST′.

The diagram in Figure 6 shows the application of the Godement calculus to
handle semantic interoperability, defined as the interoperation of one system
with another at the level of meaning of the data, that is at the metadata level.

The composition of the top line of functors Ir ◦Or ◦ P gives the mapping
from concepts to data for say a relational system r. The composition of the
middle line of functors Ior ◦Oor ◦P gives the mapping from concepts to data
for say an object-relational system or. The composition of the bottom line
of functors Ioo ◦ Ooo ◦ P gives the mapping from concepts to data for say an
object-oriented system oo. Comparing these compositions gives a framework
for interoperability. For instance the natural transformation α′ compares how
the mapping is performed from constructions to schema in a relational sys-
tem r with that from constructions to schema in an object-relational system
or. The natural transformation β′′ compares how the mapping is performed
from schema to data in an object-relational system or with that from schema
to data in an object-oriented system oo. The advantage of the Godement
approach is that arrows at any level may be composed with each other.
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Fig. 6. Semantic Interoperability in terms of Godement

To extend the categorical framework to handle organisational interoper-
ability, defined as the interoperation of systems at the business process level,
we need to vary the functor P for each environment so that the metameta
level is variable. The required diagram is shown in Figure 7.

CPT CST SCH DAT
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β′

Ioo
β′′

Or Ir
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Fig. 7. Organisational Interoperability in terms of Godement

Applying the rules given at ([3], 1st ed., pp 94-97), the following compo-
sitions hold in Figure 7 according to the Godement calculus:

(β′ ◦ α′)(β ◦ α) = (β′β) ◦ (α′α) (7)

(Ior ◦Or)α = Ior(Orα) (8)

α′(Or ◦ Por) = (α′Or)Por (9)

Ir(β′ ◦ α′)Por = (Irβ
′Por) ◦ (Irα

′Por) (10)

α′′α′ = (α′′Oor) ◦ (Irα
′) = (Iorα

′) ◦ (α′′Or) (11)

A number of general principles in composition are shown by the equations.
Equation 7 indicates that of commutativity (the interchange law); equations
8. . . 9 indicate that of associativity; equation 10 indicates that of permutation
of paths. The last equation, 11, shows the production of simultaneous equa-
tions representing different paths through the diagram. This is an important
feature as it facilitates the solution for an unknown mapping. For example,
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in equation 11 above, if the values α′, α′′ and Ior are known, then Or is the
only unknown and a solution can be found for it. That is if it is known how
the mapping from constructions to schema and from schema to data varies
between a relational system r and an object-relational system or and what
the mapping is between schema and data in an object relational system or,
then the mapping between constructions and schema in the relational system
r can be derived.

4 Discussion

One of the purposes of developing a formalism for a problem area is to provide
a rationale in which standards can be planned and discussed. It is perhaps
only in the ideal world that standards are based entirely on a theoretical basis.
Nevertheless some of the idiosyncrasies and inconsistencies of SQL have been
attributed to not rigorously applying axiomatic set theory to the standard [4].

Category theory is a promising candidate as a formalism to assist in
the preparation of an interoperability standard because of its pedigree as
a workspace for relating different mathematics. The work here has shown
that it can indeed perform this role with information systems and cover three
critical areas of data structuring, constraints and manipulation (process) in
an integrated manner. Recent advances in category theory are likely to im-
prove its match with reality: 2-categories enable some of the strict criteria for
composition and associativity to be relaxed to some extent [2].

The approach developed here is close in a number of respects to the IRDS
standard for a reference model (ISO/IEC 10027, 13238). IRDS was based too
on a multi-level approach with intension-extension pairs. However, IRDS has
had limited success and we would attribute this to its reliance on set theory.
This has made it difficult to handle multiple levels and has given an emphasis
on data structure over important aspects such as process. Implementation has
therefore been difficult.

Another standards approach which appears to have been used more is OSI
which has a reference model containing seven layers: Application, Presenta-
tion, Session, Transport, Network, Data and Physical. OSI clearly covers more
aspects of information systems than IRDS and is expressed at a lower level
conceptually so it is easier to implement a complete system. OSI has omis-
sions in security and business processes which are very important in current
distributed web-based applications. Of direct interest is the final draft pro-
posal (ISO/FDIS 19439) for enterprise modelling which attempts to standard-
ise constructs for enterprise modelling including business process modelling.
Without a formal basis, such a standard will be difficult to apply non-locally.

There are two basic tensions that arise with the use of standards: variety
and naturality, manageable when local, but irreducible in the non-locality of
globalisation. In simple examples uniformity arising from a fixed and narrow
standard can result in a loss of variety on account of stringent reductionism.
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By Ashby’s law of requisite variety [1] a system is driven down if it lacks
the necessary variety to provide a source for development, originality and
creativity. Two or more interoperable systems require a sufficient interacting
variety to operate, otherwise they will be driven down, that is seize up. The
use of naturality in a formal context, as in the work presented here, is seen as
a step forward in raising the quality of interoperability in the real world.
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4. Date, C J, & Darwen, Hugh, Foundation for Future Database Systems: The
Third Manifesto 2nd Ed, Addison Wesley (2000).

5. Dietz, Jan L.G.,: DEMO Modelling Handbook version 2.0 (1999).
6. Diskin, Z., & Cadish, B.,: Algebraic Graph-Based Approach to Management of

Multidatabase Systems, NGITS’95 69-79 (1995).
7. Fegaras, L., & Maier, D.,: Towards an Effective Calculus for Object Query

Languages Proc 1995 ACM SIGMOD 47-58 (1995).
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