Composing monads for a musical performance
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Abstract Music is a testing challenge for formal
information systems. Here we apply the full power of
category theory to the challenge, involving the topos for
data structuring and the monad for process. The topos
handles many aspects of the data for a performance
including the score and variants, the orchestral players,
the conductor and the supporting infrastructure such
as funding bodies. The monad as process controls the
adjointness between the functors representing articulation
and intonation, based on perceived activity in the brain
in professional musicians. We present a musical perfor-
mance as a categorical composition over time signatures
that proceed in successive adjoint steps with the monad
looking back and its associated comonad looking forward.
The physical complexity of each musical sound operates
in its respective time-frame, represented by a limit,
as a colimit. The formalism can be implemented in a
functional programming language such as Haskell.
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1 Introduction

Much work has been done on computer representations
of music at the physical level. Developments by Klumpen-
houwer such as K-nets [10] provide a way for representing
transformations from one pitch-class to another. A pitch
class is all notes an octave apart, for example all C avail-
able on a piano. In a classical system there are 12 pitch
classes, one for each note on the 12-note scale. K-nets
represented a fundamental change from a set-theoretical
approach to music theory into a transformational one.
Earlier the emphasis had been on the pitch classes be-
ing treated as sets of elements, each element being a note
within the item. This enabled chords and other combi-
nations of notes to be modelled. The transformational
approach extended this technique by adding a transition
from one pitch class to another to capture the dynamic
possibilities within a musical piece. Such a transition
from, say, K1 to K2 was tightly structured, with the tar-
get K2 being isographic to a source K1. Isographism is
similar to isomorphism but within a graphical context.
The cardinalities of the source and target nodes must be
the same. K-nets are therefore a very disciplined but re-
stricted way of moving from one pitch class to another:

they can handle the situation where the labelling of nodes
is consistent from one system to another and where the
transformations are classical as, for example, within the
48 preludes and fugues (Well-Tempered Clavier) of JC
Bach, handling all 24 keys.

A more general form of K-nets was defined by Lewin
[13] in an extension of Klumpenhouwer’s work, attempt-
ing to make the graphs and their transformations more
general. These have been termed L-nets by O’Donnell
[25]. L-nets extend a node from being a static collection
of pitch classes to a network of transpositions, giving a
transformational model, allowing numerous graphic pos-
sibilities for representing a single pitch-class set.

2 Previous Attempts with Cate-
gory Theory

L-nets still have their origin in set-based graph theory.
It was not long before the potential was seen for a move to
category theory with the nodes in the graph becoming cat-
egories and the edges becoming functors. Category theory
should facilitate the development of a logical approach to
music, which can be mapped into one of the physical ap-
proaches for implementation. Towards this aim a massive
tome The Topos of Music, 1335pp long, was produced
by Mazzola [17], bringing together many of the recent
advances in the theory of music. The title is, however,
misleading with a formal topos approach, based on the
Cartesian closed category, not attempted. In the preface
(p.v) it is stated that the word topos is used in the style
of Aristotle’s or Kant’s topic. Chapter 19 Topoi of Music
gives an overview of the Grothendieck Topology but does
not, relate the topology to music. In later sections the
word topology is frequently used but is nowhere elevated
formally to a topos. Section XVI, containing Appendices
C-1, deals with many categorial concepts but not in a mu-
sical context. Because the book is disjoint in its treatment
of the topos and music, it has failed to achieve its aim as
highlighted in the title. The most relevant section for the
application of category theory to music is Chapter 6 Deno-
tators, a concept developed further in collaboration with
Andreatta.

The subsequent paper by Mazzola and Andreatta [18§]
develops the idea of a category of directed graphs with ob-
jects as notes or chords and edges as musical operations
such as transposition. The formalism of K-nets in cate-
gory theory as denotators is developed in detail as a di-
graph, with vertices and arrows. In music the vertices are



pitch classes and the arrows are operations; between any
two vertices, there may be multiple arrows and an arrow
may map from a vertex to the same node, a loop. A path
in a digraph is a sequence p = aq, as, ..., a; where ¢ is the
number of arrows (a) in the digraph. The operations are
the elements of a group T'/I (translation/inversion), that
is a bijective mapping ensuring that p is invertible. In cat-
egory theory T'/1 is a category with one object Z15 (the 12-
note scale) and automorphisms f : Z;5 —> Z15. The au-
thors acknowledge that Z;, is far too restrictive from the
articulation viewpoint, replacing it by a four-dimensional
real vector space Ry, where the coordinates represent on-
set o, pitch p, loudness [, and duration d, in a parame-
terization by real numbers. Their use of the powerobject
for collections of notes as a basic type enables chords to
be represented, the powerobject being any combination
of notes permitted from Z15/R4. The complex catego-
rial formalism ultimately developed involves limits, co-
limits, presheaves, powerobjects and the Yoneda embed-
ding. The references to the categorial literature are very
general but it appears that their approach towards limit
denotators owes much to the uncited Eilenberg-Moore cat-
egory: the pullback of the category of presheaves on the
Kleisli category along the Yoneda embedding.

More recent work by Popoff and his co-workers devel-
oped the generalised Poly-K-net or PK-net [26]. PK-nets
enable heterogeneous collections of musical objects to be
naturally compared and manipulated [27]. In particular
the cardinalities of the source and target nodes do not
have to be the same and the labelling of the nodes in
two different approaches may be varied to suit the genre.
Five main categories are developed, one PKNR for the
underlying PK-net and four others as homographies of
the PK-net. Four functors are defined, relating the cate-
gories. Natural transformations are used to generalise iso-
graphies. Their work does not employ explicitly Cartesian
closure so does not appear to be from a topos viewpoint.
The dynamic aspects involve a combination of functors
and natural transformations, following a Godement cal-
culus approach.

Problems occurred with the sets representing the
graphs, resulting in their replacement by the category
of relations REL [28]. This facilitates handling relation-
ships but is inferior to the pullback, which can be locally
Cartesian closed and hence adaptable to a topos view.
Another fundamental difficulty is that the reliance on di-
rected graphs means that the approach is Euclidean, with
its limited dimensions.

The main findings from the literature review are that
the approaches do not provide a natural correspondence
with music. In particular the conversion of the K-nets and
successors to categories, functors and natural transforma-
tions is categorification at a low-level of the set theoretic
graphical structures, on a 1:1 basis. However the denota-
tors approach [18] with the apparent use of the Eilenberg-
Moore category comes closest to our approach presented
here and the PK-nets or denotators could be very useful
as a basic representation of the notation in the score.

In the remainder of this paper we provide an introduc-
tion to natural category theory in Section 3, a description
of the data structure employed of a topos in Section 4,
an assignment of musical processes in the brain in Section
5, use of the monad and their composition for processes

operating within the topos in Sections 6, 7 and a discus-
sion of the applicability of the approach and future work
in Section 8. A verbal presentation of the work was given
at the 6th World Congress on Universal Logic, held at the
University of Vichy, France, in June 2018 [31].

3 Natural Category Theory

The alternative approach to categorification is to search
for a natural correspondence between music and category
theory. Music is a composition of sounds from point to
point as a succession of transitions. Category theory also
involves, as a central tenet, the principle of composition,
from the target object of one arrow to the source object
of another. In both music and category theory the arrows
have a direction from a starting point to a closing point,
though loops may exist. An isolated point in music is a
sound without context while an isolated object in category
theory is simply a set. It is the processes that map from
object to object that provide the naturality.

The practice by a performer of playing a score is the per-
sonal communication, often highly intensive, of the piece
to a listener. When performing a player is at the same
time both looking forward to what is to be played next
and looking back at what has just been played. The pro-
cess of music is indeed similar to that for transactions in
a database system, where monads have been used to rep-
resent process [30]. There are however some significant
differences. Aestheticism is an important part of music,
covering aspects of articulation such as style and impro-
visation, subject to the rules of intonation. So while in
database systems it would be a major deficiency if trans-
actions were not always perfect to the letter of the require-
ments, in music variation through expression is an inte-
gral part of a performance, involving a departure from
the score in aspects such as phrasing, rubato and ar-
ticulation. It is necessary to move from the syntactic
level of Shannon’s communication theory to the seman-
tic/aesthetic level.

The simplest starting point for a data structure suitable
for music is the pullback, representing a binary relation-
ship as a limit of a product. Such a structure can be
enriched to a locally Cartesian closed category (LCCC),
by incorporating connectivity (exponentials), an internal
logic (A-calculus), identity (from the limit), interchange-
ability of levels (objects can be categories, a category-
object), hyperdoctrine (adjointness between existential
and universal quantifiers and the diagonal). Ideally the
LCCC should be embedded in a topos, the data struc-
ture of choice in applied category theory, requiring the
definition of relationships within a coproduct (co-limits),
an internal intuitionistic logic (Heyting), a subobject clas-
sifier (query) and a reflective subtopos viewpoint (query
closure). These structures will be illustrated in a musical
context in the next section.

In music the structure of the nodes is potentially very
complex and diverse ranging from a single note through
tonal chords and dissonant combinations to microtones.
On the piano powersets of integers may suffice but the
Cartesian space will be more complex for the violin.
Cartesian spaces as pullbacks can be constructed for real
numbers through smooth manifolds expressed as differ-



ential forms. Another dimension is the articulation, de-
scribed earlier.

The intension/extension relationship plays a central
role in music. The intension is the type; the extension is
the collection of instances that satisfy the type. It is not
as simple though as a hierarchy of types. There remains
a philosophical dimension to the design. The Universe
contains everything. The Universe of Discourse (UoD)
is that section of the Universe of interest to our applica-
tion. By the laws of physics we cannot isolate any part of
the Universe but we can identify a section for our work.
In this case the intension is the Universe and the exten-
sion, UoD, is the world of music. A musical manuscript
is extensional to the UoD of Music as one of the objects
in this universe but intensional to the manuscript’s vari-
ants and their performances. Variants include changes to
the score (composer initiated or developments after com-
poser’s death), rehearsal (conductor initiated) and perfor-
mance. No two performances are ever the same. In the
next two sections, we bring together these ideas in the
formal definitions of the topos for a data structure and of
the monad as a process, operating inside the topos.

4 The Topos as the Data Struc-
ture

We develop the categorial data structures introduced
in the last section. Figure 1 shows the pullback diagram
for the relationship S xo V of Score (S) by Variant (V)
in the context of Occasion (O). The placement of S and
V is not arbitrary: S is the independent variable and V
the dependent variable. S Xxo V holds the intension and
extension for pairs of S and V participating in the rela-
tionship; S, V and O hold the intension/extension for the
Score, Variant and Occasion respectively. The diagram
illustrates a number of features of category theory: the
diagram commutes through different paths between ob-
jects yielding the same result, that is ¢; o m; = ¢, o w5 the
restricted product S xo V is projected by 7 into its com-
ponent category-objects, to the left through 7; as S and
to the right through =, as V; the category-objects S and
V are included by ¢ in the coproduct, written convention-
ally in shorthand as O but in truth being the coproduct
S + O + V; 4 is the left inclusion and ¢, is the right in-
clusion. The lower limit ensures the diagram is natural
(universal) with a unique morphism u from the limit to
the restricted product S xgo V, providing a factorisation
through the whole diagram. The objects in the diagram
are categories, with their own internal structure of arrows,
termed category-objects.

It is worth emphasising that the term Occasion has been
selected with some care. The term has a philosophical ba-
sis from Whitehead’s work on Process € Reality [34] where
it is a temporal actual entity. Among the four types de-
fined, the last ‘occasions of experience of the fourth grade’
is the most relevant for music, involving experience in the
mode of presentational immediacy, which is taken to mean
the qualia of subjective experience.

The diagram in Figure 1 can be converted into the
LCCC of Figure 2 (labelled LCCC 1) by showing the
functors between the restricted product S xo V and the
coproduct S+ O + V; as a hyperdoctrine, there is ad-

jointness between the functors: the existential quantifier
dis left adjoint to the diagonal A, which is right adjoint to
the universal quantifier V. The quantifiers 3 and V provide
the search facilities of an information retrieval or database
system. The diagonal functor A identifies pairs in the re-
lationship between S and V in the context of O. The
opposite arrows are shown with inverse projections as 7*
and inverse inclusions as :~!. Two properties, part of the
adjointness, remain to be defined: 7 is the unit of adjunc-
tion measuring freeness through 7; in the diagram and €
is the counit of adjunction measuring co-freeness through
m%. The category-objects in a LCCC are typically further
LCCC so a category-object at the top-level can be de-
composed into further category-objects, each representing
more detail in the application. A locally Cartesian closed
category therefore provides a recursive feature.

An interesting question is when can the colimit, a
pushout in category theory, be constructed in a pullback
diagram. The colimit represents the upper limit, the de-
fined sum of the included categories in the context of the
limit. The sum can only be defined when some special
conditions occur in the pullback diagram, restricting its
flexibility.

The first condition concerns the freedom of the map-
ping. The relationship between the independent and de-
pendent variable in its most general case is N:M (many
to many), for example if the independent variable was
Orchestra and the dependent variable was Player: each
orchestra contains many players and each player performs
for many orchestras. In this case each projection arrow is
N:1 and each inclusion arrow is 1:N. A more restricted case
is 1:N [2], such as for our running Score/Variant example,
where each score has many variants but each variant refers
to only one score. In this case the left projection arrow
is N:1 and the left inclusion arrow is 1:N; the right pro-
jection and right inclusion arrows are both 1:1. The most
restricted case is 1:1. Very few natural relations are 1:1
over any length of time. For example a Player may gen-
erally be assigned to one instrument but flute players for
instance often play the piccolo as well. An Orchestra may
have one Manager but over time new managers will be ap-
pointed. Even more artificial examples may not always be
1:1. For example Player to National Insurance Number is
not 1:1 if two players have the same name. In such cases
1:1 can be enforced by names being required to be unique
for booking purposes. However, in spite of its scarcity in
nature, it is 1:1 that is required for the colimit to be con-
structed in a pullback diagram. So we cannot construct a
colimit for Figure 2 as the relationship between Score and
Variant is 1:N.

The second condition concerns the mapping onto the
sum. It is necessary for this sum to only include values for
the independent and dependent variables with no extrane-
ous information. This is enforced by both inclusion arrows
being typed as epic (surjective) so that all values in the
sum are assigned, as in Pulation diagrams [1]. Another
issue with Figure 2 is that the diagram looks to be en-
tirely intensional with no provision for the extension. We
find that constructing a diagram with both pullbacks and
pushouts facilitates the design of the intension/extension
relationship.

Figure 3 shows a diagram for a pullback with a limit
that is also a pushout with a colimit when the arrow fy



from the independent to the dependent variable is 1:1 and
the arrows ¢; and ¢, are epic (surjective) onto the defined
sum. Such a diagram is termed Dolittle, named after The
Story of Doctor Dolittle by Hugh Lofting (1920), involving
the mythical Pushmi-pullyu creature. This Dolittle dia-
gram, holds the intension/extension relationship for the
category object S as follows. The arrow fj is a set-valued
functor relating the independent variable, the higher ob-
ject S, the type for Score, to the dependent variable, the
lower object S, the set of values for Score. Since the map-
ping fo is to the set as a whole, fy is 1:1 and the inclu-
sion and projection arrows are also 1:1 with the restricted
product and defined sum expressed as sets. Both the in-
clusion arrows are epic. The restricted product, the limit
SX or S xgy S, is pairs of type and value in the context
of the colimit S+, that is S +sx S. The relationship on
the left-hand side is an explicit product while that on the
right-hand side is an implicit coproduct.

The diagram is repeated in Figure 4 with the nodes la-
belled as type, value or combination of the two; this gives
a more explicit view of the intension/extension relation-
ship with fy : S-type — {S-value}.

Figure 5 shows in outline form how the category-object
S within the LCCC of Figure 2 is a Dolittle square. Every
node in the diagram of Figure 2 will be a similar internal
pullback-pushout square, with limits and colimits, relat-
ing the definition to the instances, as described in detail
by the authors elsewhere [30]. The type of the data val-
ues needs further elaboration. While Figure 4 shows the
type for the Score is S-type, this is rather abstract. if we
look at the work of Mazzola and Andreatta [18] discussed
earlier, they suggest the use of denotators for articula-
tion purposes with a musical object being expressed as
the powerobject of Z15/ R4, where Z15 is the 12-note scale
and R4 holds the parameters onset o, pitch p, loudness 1,
and duration d, as real numbers. Z;5 could be expanded
to Zss (53 Equal Temperament) to satisfy some musicol-
ogists [11], who find such a structure appealing for music
from the east and for prefect thirds and fifths. We would
not include the transitions as digraphs in the structural
side: these are processes within the music (and the topos),
for which we use monads as discussed later.

Dolittle diagrams appear to be equivalent to extensive
categories, which have coproducts that interact well with
pullbacks, and adhesive categories, which have pullbacks
and pushouts of monomorphisms as 1:1 mappings. This
is important as such categories are readily embedded into
a topos [23, 24], yielding our objective of a topos as the
data structure.

The full data structure will be more complex than a
single pullback with the combination of further categories
representing other entities such as composers, conductors,
musicians and venues into one comprehensive LCCC. The
pullbacks are pasted together to give complex relation-
ships as described for information systems elsewhere [30].
Here we use as an example in Figure 6 how data for the
composers, held in the category-object C, is linked to that
for the scores and variants. We label the pullback from
Figure 2 as Pb1 and introduce another pullback Pb2 with
independent variable C and dependent variable the rela-
tionship for Pbl. We paste the left inclusion ¢; of Pb2
onto the right projection m,. of Pbl to give a pullback
square, which contains three pullbacks Pbl, Pb2 and

Pb2 xy Pbl with the last named factored through V.
All of these three diagrams have to be valid pullbacks in
their own right for the relationships to hold. The over-
all relationship, which we label LCCC 2, is of score with
variant by composer in the context of occasion. The at-
tachment of the composer to the variant gives flexibility
for the variant to be made by the original composer of the
score or another musician altogether.

S

/ \
"T\
limit T SXyV o
Uy
I
V

Figure 1. Relationship of Score by Variant in Context of Occasion
S Score, V Variant, O

as Pullback S xo V. Category-objects:
Occasion

limit —“—»S X,V

Figure 2. LCCC 1: Locally Cartesian Closed Category for Rela-
tionship S xo V. Category-objects: S Score, V Variant, O Occa-
sion

|imiti>SX(S+) S S+ S+(SX) S Y . colimit

Figure 3. The Intension/Extension Relationship in a detailed
Dolittle Diagram, as both a pullback and a pushout, for the
Category-object S (Score) in Figure 2. fo relates intension S to
extension S. The colimit is the pushout ST and the limit the pull-
back Sx

Pastings provide a way for extending a data descrip-
tion horizontally to represent relationships between inde-
pendent entities or types. There are also relationships
in which one entity-type is dependent on another, in
which we can extend the data description vertically by
decomposition. Examining the components of an orches-
tra provides an example of this technique. An orches-
tra comprises sections such as strings, woodwind, brass
and percussion. LCCC 3 can be constructed for the re-
lationship ORCH x o SCT between the category-object
ORCH for Orchestra and the category-object SCT for
Section in the context of category-object O for Occasion;
this is shown in Figure 7 as Pb3. Occasion has the same
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Figure 4. The Dolittle Diagram of Figure 3 for the Category-object
S (Score) repeated with the nodes labelled as S-type, S-value or a
combination of the two
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Figure 5. Category-object S (Score) as node in Figure 2, expanded
in outline as the Dolittle Diagram in Figure 4

m
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Figure 6. LCCC 2: Pasting of the pullback for the relationship
S xo V (Pbl) with a pullback with independent variable C (Pb2)
to give overall relationship (S xo V) xv C (Pb2 xv Pbl), fac-
tored through V. Category-objects: C Composer, S Score, V Vari-
ant, O Occasion

meaning as before so this pullback records the orchestra
and its sections for a point in the score at a particular
event. Sections can be further specified, for instance, as
by violin, viola, cello, double bass, for strings, with violin
subdivided again into 1st and 2nd sections. However, in
the present paper for simplicity we restrict the subdivision
to one level.

Two vertical expansions come to mind. The sections
can be expanded into the instruments and their players
for an event and the orchestra can be expanded into its
current administration, such as the roles and appointees,
necessary for the orchestra to be funded and operational.
Both these relationships can be handled as further pull-
backs within LCCC 3 based on Pb3. The pullback Pb4
in Figure 7 is a decomposition of the category-object
SCT, showing the relationship between the category-
object INSTR. for Instrument and the category-object
PLR for Player in the context of category-object R for
Ranking, representing aspects such as first and second
flute. The pullback Pb5 in Figure 7 is a decomposition of
the category-object ORCH, showing the relationship be-
tween the category-object ADMIN for Administrative-
role and the category-object APPT for Appointee in the
context of category-object F for From (date of appoint-
ment). Pullbacks Pb3, Pb4 and Pb5 collectively make
up LCCC 3.

_ INSTR X, PLR R
- \ Pbd
-
“~
PLR
/ W

ORCH X, SCT
= o Pb5 “a

~ ~ ADMIN X_APPT F

L

APPT

Figure 7. LCCC 3: the relationship ORCH xo SCT (Pb3)
between Orchestra and Section in the context of category-object
O for Occasion, including the decomposition of category-object
SCT for Section into the relationship INSTR xr PLR (Pb4)
and of category-object ORCH for Orchestra into the relationship
ADMIN xg APPT (Pb5)

The LCCC 2 of Figure 6 and the LCCC 3 of Figure 7
contain a common category-object O for Occasion. This
means that the two LCCC can be merged into a single cat-
egory, which we call PERF representing an instance of a
performance. Figure 8 shows the merger, best viewed as
a pullback of LCCC 1 over LCCC 2 in the context of the
colimit. The colimit is the defined sum of the category-
objects of PERF, the joint effort in an occasion by the
orchestra, with its players and administrators, on the vari-
ant of the score, written by the composer. The colimit
represents the sound generated by the players. Each oc-
casion of the music is one instance on the time-line of the
score, with each category-object a Dolittle diagram hold-
ing the intension/extension for the entity. We do not show



these to avoid cluttering the diagrams.

The limit is the product of the orchestra structure in
the context of the score structure for each occasion O.
The limit indexes an event, such as a specific bar num-
ber called by the conductor in a rehearsal. The category
PERF, with its internal Dolittle structure, is an adhesive
category readily embeddable into a topos, which acts as
a placeholder. Figure 8 captures in categorial terms the
requirement that a performance is indeed a team effort,
involving many partners.

colimit
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Figure 8. Topos PERF: the relationship between LCCC 3 (or-
chestra structure) and LCCC 2 (score structure) for an occasion in
the performance, represented by the colimit

5 Process in the Brain

We look at processes in the brain as an informal way to
introduce the categorial concepts that underpin process.
The concepts required are a data structure, the topos as
already introduced, the processes which underpin the mu-
sical performance and a control mechanism for the pro-
cesses.

The example chosen, to give a preliminary view of the
processes involved in the mind, is a performance on the
violin. The left hand of the player performs pitch control
through intonation and the right hand performs articu-
lation through bowing. From studies of brain activity
in psychology the hemisphere of the brain that controls
a particular function is opposite to that performing the
function. So the intonation on the violin is handled by
the right-hand side of the brain and the articulation is
handled by the left-hand side of the brain. Dehaene et al

[5] support this picture by showing that linear reasoning
functions of language such as grammar and word produc-
tion, corresponding to articulation, are often lateralized
to the left hemisphere of the brain and holistic reasoning
functions of language such as intonation and emphasis are
often lateralized to the right hemisphere of the brain.

Dehaene et al also found that many higher-level activ-
ities are done through co-ordination of both sides of the
brain, an important finding for the development of our
argument that the two hemispheres of the brain must be
co-ordinated for a musical performance to be made. Keep-
ing rhythm is an example of an activity requiring the co-
ordination of both hands in playing any instrument and
the violin is no exception. Indeed we would suggest that
rhythm should be considered as part of the process of
delivery or performance, which is higher-order involving
both intonation and articulation in the context of a time
series.

The front portion of the human corpus callosum, a nerve
tract in the centre of the brain, has been reported by
David Levitin ([12] p.226) and Greg Miller [19] to be sig-
nificantly larger in musicians than in non-musicians. Mu-
sical training has been shown by Steele et al [33] to in-
crease plasticity of the corpus callosum during a sensi-
tive period of time in development. The implications are
an increased bimanual coordination, differences in brain
structure, and amplification of plasticity in motor and au-
ditory faculties which would serve to aid in future musical
training. The study of Steele found children who had be-
gun musical training before the age of six (minimum 15
months of training) had an increased volume of their cor-
pus callosum and adults who had begun musical training
before the age of 11 also had increased bimanual coor-
dination. A similar result was found by Hyde et al [9]
who collected detailed magnetic resonance images of the
children’s brains at age 6 and again at 9. Of the orig-
inal group, six children faithfully practiced at least 2.5
hours a week in the time between the scans. In these
promising musicians, a region of the corpus callosum that
connects movement-planning regions on the two sides of
the brain grew about 25% relative to the overall size of
the brain. Children who averaged only an hour or two
of weekly practice and those who dropped their instru-
ments entirely showed no such growth. All of the children
practiced instruments, such as a piano or a violin, that
required two hands.

Categorial concepts apparently matching the brain pro-
cesses are a category for holding the information (the
topos PERF developed earlier), functors for each main
process acting on the topos (articulation, intonation), ad-
jointness between these functors and a monad controlling
the adjunction. The functors in more detail are A for
articulation and I for intonation. A is the free functor,
the creative step operating on one instance PERF in the
left-hand hemisphere of the brain. I is the underlying
functor, enforcing the rules, operating on the same in-
stance PERF in the right-hand hemisphere of the brain.
If the two functors are adjoint then there is a natural re-
lationship A - I, defined by the 4-tuple < A,I,n,e >
where 7 is the unit of adjunction and € is the counit of
adjunction. The unit measures the creativity in one cycle
of the free and underlying functors, starting with the free
functor. The counit measures the adherence to quality



in one cycle of the free and underlying functors, starting
with the underlying functor. The adjointness therefore
gives a measure of the creativity and quality of the perfor-
mance. The monad is a process, controlling the composi-
tion of the adjoint functors I A across the two hemispheres
of the brain and therefore acting as the corpus callosum.
Also co-ordinating activity in the corpus callosum is the
comonad, dual to the monad, which controls the compo-
sition AI. The monad and comonad represent the intense
mental effort required in coordinating the left and right
hands of the player. In the next section we look at the
category theory in more detail. A schematic diagram of
the processes involved in shown in Figure 9.

Hemisphere of Brain

Left Right
corpus callosum

A -|I (adjunction) | ;

A - -
\(functor) | controlled by monad, | (functor)
Intonation Articulation
Left Right
Violin Hand

Figure 9. The Processes in the Brain of Articulation A and Into-
nation I as Categorial Concepts. A is left adjoint to I and I right
adjoint to A, written A - I, all under the supervision of the monad
T

6 The Monad operating within
the Topos

To achieve a musical performance we need to define an
activity on the topos to realise the sound. This requires
a process, as indicated by Heraclitus (all is flux) and dis-
cussed at length by Whitehead in Process & Reality [34].
In information systems process corresponds to transac-
tion, representing activity on the contents of a database
system [29]. A transaction requires three cycles: the first
makes the change, the second checks the change against
the rules, the third rolls back the change if the rules are
broken or records the change if it is acceptable. A trans-
action can be very complex but the whole is viewed as an
atomic action with a binary outcome: success or failure.
The before and after states must be consistent in terms of
rules; intermediate results are not revealed to others and
the results persist after a successful outcome.

In a musical performance matters are not so binary as
in the world of databases. In the first cycle of adjointness,
a performer will apply articulation and intonation to the

time bar; in the second cycle the performer will apply the
rules and may, for instance, make minor adjustments on
the violin to the left-hand finger positions (intonation);
in the third cycle the performer reviews the whole sound
effect; only in extreme circumstances would the performer
rollback, by reverting to the previous timebar; for the unit
of adjunction, the change represents creativity by the per-
former in articulation with no change indicating a lack of
expression; for the counit of adjunction, no change repre-
sents strict adherence to the score by the performer in in-
tonation with change indicating departure from the score.
Clearly there is a balance between articulation and into-
nation with a lifeless, over-strict performance resulting in
no change to the unit and counit of adjunction and an
expressive performance, deviating from the strict score,
being measured by the unit of adjunction for creativity
and by the counit of adjunction for the extent of the de-
viation.

The monad is the preferred way of representing pro-
cess in category theory and functional languages. The
term originates from Leibniz for an elementary ‘substance’
whose interior cannot be examined. In the object-oriented
programming paradigm, Leibniz’s ideas correspond to en-
capsulation, used to define a process with a clearly-defined
interface to hidden internal workings. A monad is based
on an endofunctor, a functor with the same source and
target category. Such an endofunctor may be written
F : X — X where X is a category. An endofunc-
tor can also be a pair of adjoint functors: IA where
A : PERF — PERF, I : PERF — PERF, as
the source and target category is the same, PERF. It
is this application of an endofunctor that we adopt in
this paper. The diagram in Figure 10 shows the adjoint-
ness A 4 I with its unit n :: 1p — TA(P) and counit
€ : AI(P") — 1% of adjunction, where P and P’ are
objects in PERF.

n
v

PERF

Figure 10. The pair of Adjoint Functors A - I as an endofunctor
with source and target category PERF. A is left adjoint to I and
I right adjoint to A. I intonation, A articulation

As in the world of transactions, in category theory a
monad can be viewed as involving three cycles: TAIAIA
of the free functor A and the underlying functor I defined
above, where A - I, that is A is left adjoint to I and [
is right adjoint to A. The monad therefore involves three
cycles of the diagram in Figure 10. It should be noted
that while the term cycle is appropriate from the practical
point of view it is slightly misleading: the monad is actu-
ally a snap rather than three cycles in turn, corresponding
to the prehension (or grasping) of Whitehead [34]. Writ-
ing I A as T, the monad is shown in Figure 11(a). There is
a dual comonad shown in Figure 11 (b) where S = AI, S3
is ATAIAI. The monad < T,n,u > operates within the



topos PERF as T : PERF — PERF, and the comonad
< S,6,6 > as S : PERF — PERF, where n and € are
the unit and counit of adjunction respectively and p and
¢ are multiplication and comultiplication respectively.

Ty S
T3 4“1’2 SB “782

(@ uT H S5 5

™ »T s?

H ¢}

Figure 11. (a) The monad construction 73 — T? — T where
T =TIA, p:T? — T is multiplication; (b) the comonad construc-
tion § — S? — S3 where S = AI, § : S — S? is comultiplica-
tion. I intonation, A articulation

In keeping with its economical notation, a monad is
commonly identified in category theory by its endofunctor
rather than by an additional symbol. So the monad con-
struction < PERF, T, n, i > is referenced as the monad
T. Similarly the comonad construction < PERF, S, ¢, 6 >
is referenced as the comonad S. Some sources use bold
font for monad names indicating that the monad is a cat-
egory [15]. While a monad does satisfy the properties of
a category, we prefer to treat it as a functor, as done by
Sankar [32], to indicate its active role. We add to the def-
inition the category upon which the monad is based, here
PERF, after Mac Lane [14].

7 Composition of Monads

One monad operation or instance T relates articulation
and intonation in a single time-frame. We now need to
compose monad instances across all the time-frames in a
musical work. Compositionality is a cornerstone of cat-
egory theory and at the applied level is straight-forward
with, say, ...,0 T” oT’ o T representing the composition
of the three monads: T with 77 and T, as the progres-
sion from a time-slice T to T” to T", ... . This naturality
or abstraction at the applied level is maintained in the
functional programming language Haskell [6], named af-
ter Haskell B Curry, who developed the transformation of
functions through currying in the A—calculus. In Haskell
the monad is an increasingly popular construction as an
abstract data class with the composition from monad to
monad being natural as above. A motivation for Haskell
in employing the monad construction was to assist in com-
positionality of functional programs. Indeed Haskell pro-
vides a practical testbed for the categorial concepts devel-
oped in this paper.

In pure category theory the composition of monads has
generated much theoretical discussion. The monad in
Haskell is formally classified as an extension of the monad
developed by Eilenberg-Moore, involving the notion of a
strong monad [15, 16, 21] after work by Kleisli. In more
concrete terms a strong monad is defined as a (categorial)
monad with strengthening with respect to products and
idempotency. The strengthening with products leads to
the concept of a Cartesian monad where, if the underlying
categories are pullbacks, the monad T preserves pullbacks
and p and n are Cartesian, then the monad is Cartesian.
This strengthening of the monad results in composition of

monads in Haskell being natural for all monads, includ-
ing Cartesian ones. Our monads are Cartesian as PERF
is Cartesian, involving products as pullbacks. More tech-
nical detail on the Kleisli monad can be found in earlier
work by the authors [30], showing how the Kleisli lift is
applied to a monad to improve its behaviour with respect
to the laws of distributivity in comparisons and compo-
sition [16]. Such laws ensure that an operation applied
to each of the parts of an expression gives the same re-
sult when applied to the whole e.g. 2(a+b) = 2a +2b. A
distributive operation provides reproducible results.

To explore the detail for the music application, we need
to define the three monads T,7T’,T” and their respective
dual comonads S, S’,S":

T =< PERF,T,n, >
T =< PERF,T',7/, ' >
T" =< PERF,T". 7/, i >
S =< PERF, S,¢,0 >
S’ =< PERF, S, ¢,6 >
S" =< PERF, S",¢",6" >

The underlying topos category remains unchanged as
PERF but the adjunction is different, reflecting the dif-
ferent time bar and how it is performed with unique unit
and counit of adjunction. So a player can be expressive
or slightly off-pitch in one part of the score and not in
another, as reflected in an actual performance.

For the subtleties in a performance of a musical compo-
sition we need to examine the potential connections be-
tween successive monads and comonads. There are at
least three facilities available in category theory, involv-
ing 1) a composition of the functorial components of two
monads; 2) a distributive law governing the composition
of functorial parts of two monads; 3) adjointness between
the functorial parts of a monad and a comonad. The
functorial parts of monads, rather than the monads them-
selves, are always considered in composition as they are
actions while the monads are classes. We now consider
these facilities in more detail:

1. We can compose the functorial components of mon-
ads if a number of housekeeping rules are satisfied
as defined by Barr & Wells ([3] p.259) with the ex-
pression: T" o T a composite of monads with func-
tors 7" and T respectively. Such a composition
of monads Ty =< PERF, T’ o T;ng, up > is com-
patible with monads 7' =< PERF,T,n,u > and
T =<PERF, 7.7/, 1 >.

2. We have a distributive law [4] with a natural trans-
formation defined as A : T oT — T o T" comparing
any two endofunctors on the category PERF. The
distributive law enables Cartesian monads to be com-
posed naturally, as discussed above for the Kleisli lift.

3. There is an adjunction, between the functor compo-
nent of a monad and the functor component of a suc-
cessor comonad. The free functor in such an adjoint-
ness is the functor in the comonad and the underlying
functor is the functor in the monad [3, 4]. So from
the above definitions we can write the following pos-
sible adjunctions for the monad/comonad structures:



S" 4T and S” 4T’. These adjunctions hold if appro-
priate units and counits can be defined. They then
provide a chain through the performance from one
timebar to another with the following complete def-
initions respectively as examples: < S, T,ng:,er >
and < S” T’ ,ngr,er >. Note that at this level it
is the comonad with its apparently forward-looking
action that is driving the creativity with the monad,
looking backwards, enforcing the rules.

From the musical perspective the composition of the
functorial components of monads drives the performance
forward from one bar to another, with the distributive law
ensuring that the composition is natural. Such a composi-
tion would be 'wooden’ in the sense that the relationship
between successive bars is fixed through the timeline. The
adjunction adds scope for expression between one bar and
another with the unit of adjunction measuring expressive-
ness, such as variation in timing between one bar and an-
other, and the counit of adjunction measuring quality in
adherence to the score in moving from one bar to another,
such as in phrasing. Earlier work by the authors [7] on
handling time jitter in category theory is relevant for han-
dling subtle differences in phrasing.

8 Discussion

The net-based approaches discussed earlier in Section 2
provide a graphical approach to capturing musical perfor-
mance. In the early stages the approaches were clearly set-
based but later attempts moved to category theory. Un-
fortunately these later attempts do not represent a major
advance as they are mainly categorification of the earlier
set-based approaches, that is a conversion of set struc-
tures to categories on a 1:1 basis. Such techniques do not
make use of the natural applicability of category theory
to music as described in Section 3.

In our work we regard, as a significant development,
the use of the topos in the form of a LCCC with inten-
sion/extension relationships as Dolittle diagrams in the
nodes of the data structure. The closest approach to our
work in structural terms is that on the denotators by Maz-
zola and Andreatta [18], who use the Eilenberg-Moore
category, a lower level approach but with significant han-
dling of musical notation. Denotators could complement
our work by providing a detailed description of the score in
category theory terms. The topos also offers data struc-
turing across the whole of the musical application from
more organisational issues such as the infrastructure of
an orchestra through to composers and scores and their
variants. The limit of the topos provides an index within
the score to the bar being played; the colimit represents
the sound generated at that particular index value. The
sound therefore is influenced by everything in the applica-
tion from the infrastructure, the calibre of the performers
and the fundraising through to the physical sounds gen-
erated from the variant of the score by the instruments
under the directions of the conductor.

We would regard the monad as another significant
breakthrough in representing musical performance, han-
dling process, the dynamic aspects of the performance.
The monad and its dual the comonad enable the perfor-
mance of a musical piece to not only be monitored in sim-

ple terms as composition from one timeline to another but
also in terms of adjointness between the intonation and
articulation in the performance as it progresses. Such ad-
jointness gives a measure of accuracy and expressiveness.
The processes involved are linked to those in the brain
in Section 5 for a violin with intonation as a process [
played by the left hand and articulation A played by the
right hand.

The aesthetic aspects of music, such as anticipation,
can also be realised in our approach. There are two dis-
tinct viewpoints of anticipation in music: the performer’s
and the listener’s. The player anticipates the sequence of
notes to come by extrapolating intuitively from preced-
ing notes while at the same time physically keeping an
eye on the subsequent score and the listener builds up a
mental image of the music as it evolves. Tension builds
for listeners as their anticipation of the performance is re-
alised or denied. Such experience is captured naturally by
the monad/comonad structure with its forward /backward
nature and inherent adjointness. A specific case of this is
discussed in Section 7 where adjointness occurs between
the active part of the monad in one timeline and the active
part of the comonad in the following timeline. Overall the
monad looks backwards (T% — T? — T, T = I A) and
its comonad forwards (S — §% — S3, 9 = AI) in their
three cycles. However, the situation is more subtle than
this: in each cycle the monad looks forwards (functor A
for articulation) and then backwards (functor I for into-
nation) and its comonad looks backwards (I) and then
forwards (A). The duality of the monad/comonad repre-
sents communication in an orderly manner within initially
defined colimits and adjointness. Values for n (unit of ad-
junction) and e (counit) represent rhetoric and dialectic
respectively for the performance, giving a measure of ex-
pressiveness and accuracy. It is possible that there is a
faltering in the communication, resulting in a roll-back
with revised adjointness.

Category theory is no longer solely a theoretical ex-
ercise. As discussed earlier in Section 7, implementa-
tions are available in the functional programming lan-
guage Haskell [6]. Indeed the implementation fed back
into the theory with the need for the Kleisli lift clearly
established in monad composition. Besides the use of
an implementation in Haskell of the category theory for
the more abstract levels in the music, there are routes
in Haskell through to the music itself as signals via Paul
Hudak’s work on the Haskell School of Music [8].

There are a number of areas where further work is desir-
able. The violin is a special case of a musical instrument
with a clear delineation between the roles of the hands
in generating the music. A number of other string in-
struments are similar, such as the viola, cello, double bass
and lute but the pedal harp involves additionally foot con-
trol. Woodwind and brass instruments are more compli-
cated with the mouth and both hands involved and the
piano, while notionally having the melody played by the
right hand and the harmony by the left hand, is much
more complicated in advanced composition. An attempt
to produce a more general match between the brain and
the instrument is desirable. The notion of anticipation,
as key to any communication process, could also be de-
veloped further from a more detailed examination of the
interplay between the monad and its associated dual, the



comonad. An attempt to link the structures developed in
this work with the denotators of Mazzola and Andreatta
and the Haskell School of Music of Hudak would provide
a very interesting demonstrator project.

9 Conclusions

Our approach naturally handles both the static and
dynamic aspects of a musical performance in a general
and flexible manner within the coherent theoretical frame-
work of category theory. The static data structuring in-
volves the topos, based on the locally Cartesian closed
category (LCCC), providing connectivity, relationships
through products and limits and colimits. The dynamic
process involves the monad, controlling the adjointness
between articulation and intonation, mirroring the activ-
ity in the brain. The formalism produced can be im-
plemented in a functional programming language such as
Haskell.

Glossary

Adjoint: a natural relationship between a functor and
its dual.
Arrow:
another.
Cartesian: a product space.

Categorification: conversion of concepts to categories
by rote.

Category: a collection of arrows, that are connected to
each other.

Closed: a category with limit, colimit and A-calculus
logic.

Colimit: the upper boundary of a category.
Composition: an action taking the output from one
task as the input to another.

Dolittle: a diagram that is both a pullback and a
pushout.

Dual: an arrow in the opposite direction.
Endofunctor: a functor with source and target the
same.

Extension: the values for a category according to some
intension.

Functor: a mapping from one category to another.
Identity: a mapping from an object onto itself.
Intension: the definition of a category.

Isomorphism: indistinguishable mappings.

Limit: the lower boundary of a category.

Monad: an operation on an adjoint.

Natural: unique up to some isomorphism.

Natural transformation: a mapping from one functor
to another.

Object: the source and target of arrows.

a mapping or morphism from one object to

Pasting: the amalgamation of one pullback with an-
other.

Pullback: a product expressed as a relationship over
some objects.

Pushout: a coproduct expressed as a sum over some
objects.

Source: the domain of an arrow.
Subobject classifier: an object which returns a logical
value, such as true or false.
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Target: the codomain of an arrow.
Topos: a closed category with intuitionistic logic and a
subobject classifier.
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