

Account ID#: GBUS92136

RE: MATERNAL ANCESTRY DNA TEST REPORT

Please find enclosed the results of the Maternal Ancestry DNA Test Report (mtDNA HVR1, HVR2 and Coding Region) which you have requested.

FamilyVault DNA Database Usage

Your mtDNA markers qualify for FamilyVault DNA database search and analysis features. The FamilyVault DNA Ancestry database allows you to:

- Search for potential family links
- Compare against indigenous populations from around the world
- Find out more about your ancient haplogroup and view the migration path your ancestors took out of Africa.
- Compare against famous people in history
- Store and share your DNA data, collaborate with family members and organize results from other members of your family

To use the FamilyVault DNA database, go to www.dnaaccess.com and login using the Email registered to this account and your selected password. You can change your email and password at any time after you login to your account online.

Step 1: Go to www.dnaaccess.com

Step 2: Click "Sign in to FamilyVault"

Step 3: Enter the email **nick.rossiter1@btinternet.com** and your selected password. Once you login, you can change the email and password at any time. Once your email has been changed, the email shown in this report will no longer be valid and you will need to use your new email to login.

Note:

Always keep the email in your FamilyVault account current. FamilyVault database usage is free and optional.

DNA Test Results HVR1, HVR2, Coding Region Test Report

Print Date: October 18, 2017

Client Information

First Name:	Brian	Account ID#	GBUS92136
Last Name:	Rossiter	Testee ID#:	26364765

HVR1, HVR2, Coding Region Profile Results

The following mtDNA profile for Brian Nicholas Rossiter has been obtained through Sanger Sequencing. mtDNA is passed down from mother to child along the direct maternal lineage. All individuals who have descended from the same maternal lineage as Brian Nicholas Rossiter are expected to have exactly the same mtDNA profile as Brian Nicholas Rossiter's profile shown below. If two individuals have different mtDNA profiles, it will conclusively confirm that they did not descend from the same maternal lineage, regardless of family legend.

HVR-1 Sequence											
16001 ATTCTAATTT AAACTATTCT C	TGTTCTTTC ATGGGGAAGC AGATTTGGGT	GCCACCCAAG TATTGACTCA CCCATCAACA	ACCGCTATGT ATTTCGTACA								
16101 TTACTGCCAG CCACCATGAA T	ATTGCACGG TACCATAAAT ACTTGACCAC	CTGTAGTACA TAAAAACCCA ATCCACATCA	AAACCCCCTC CCCATGCTTA								
16201 CAAGCAAGTA CAGCAATCAA C	CCTCAACTA TCACACATCA ACTGCAACTC	CAAAGCCACC CCTCACCCAC TAGGATACCA	Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α								
16301 CAGCACATAG TACATAAAGC C	ATTTACCGT ACATAGCACA TTACAGTCAA	ATCCCTTCTC GTCCCCATGG ATGACCCCCC	TCAGATAGGG GTCCCTTGAC								
16401 CACCATCCTC CGTGAAATCA A	TATCCCGCA CAAGAGTGCT ACTCTCCTCG	CTCCGGGCCC ATAACACTTG GGGGTAGCTA	AAGTGAACTG TATCCGACAT								
16501 CTGGTTCCTA CTTCAGGGCC A	TAAAGCCTA AATAGCCCAC ACGTTCCCCT	TAAATAAGAC ATCACGATG									
HVR-1 Qualified Cambridge Reference Sequence (rCRS) variations											
Nucleotide Position	Region	Variant Type	Nucleotide Change								
16051	HVR-1	Substitution	A>G								
16126	HVR-1	Substitution	T>C								
16294	HVR-1	Substitution	C>T								
16296	HVR-1	Substitution	C>T								
16304	HVR-1	Substitution	T>C								
16519	HVR-1	Substitution	T>C								

HVR-2 Sequence											
00001 GATCACAGGT CTATCACCCT A	0001 GATCACAGGT CTATCACCCT ATTAACCACT CACGGGAGCT CTCCATGCAT TTGGTATTTT CGTCTGGGGG GTGTGCACGC GATAGCATTG CGAGACGCTG										
00101 GAGCCGGAGC ACCCTATGTC C	CAGTATCTG TCTTTGATTC CTGCCTCATC	CTATTATTTA TCGCACCTAC GTTCAATATT	ACAGGCGAAC ATACTTACTA								
00201 AAGTGTGTTA ATTAATTAAT 0	CTTGTAGGA CATAATAATA ACAATTGAAT	GTCTGCACAG CCGCTTTCCA CACAGACATC	ATAACAAAAA ATTTCCACCA								
00301 AACCCCCC <mark>C</mark> CT CCCC <mark>C</mark> CGCTTC	TGGCCACAGC ACTTAAACAC ATCTCTGCC	Α ΑΑССССАААА АСАААGAACC СТААСАСС	AG CCTAACCAGA TTTCAAATTT								
HVR-2 Qualified Cambridge Reference Sequence (rCRS) variations											
Nucleotide Position	Region	Variant Type	Nucleotide Change								
00073	HVR-2	Substitution	A>G								
00263	00263 HVR-2 Substitution A>G										
00309	HVR-2	Insertion	C>C*								
00315	HVR-2	Insertion	C>C*								

					Coding Reg	ion Sequence	е				
00401	TATCTTTTGG	CGGTATGCAC	TTTTAACAGT	CACCCCCCAA	CTAACACATT	ATTTTCCCCT	CCCACTCCCA	TACTACTAAT	CTCATCAATA	CAACCCCCGC	
00501	CCATCCTACC	CAGCACACAC	ACACCGCTGC	TAACCCCATA	CCCCGAACCA	ACCAAACCCC	AAAGACACCC	CCCACAGTTT	ATGTAGCTTA	CCTCCTCAAA	
00601	GCAATACACT	NNNAATGTTT	AGACGGGCTC	ACATCACCCC	ATAAACAAAT	AGGTTTGGTC	CTAGCCTTTC	TATTAGCTCT	TAGTAAGATT	ACACATGCAA	
					REPORT SHALL	NOT BE REPRO	DUCED EXCEPT		WITH WRITTEN	APPROVAL	PAGE 3 of 20

00701	CONTROCONT	теслетелет	телесстетл	ΛΑΤΟΛΟΟΛΟΟ	ΑΤΟΛΛΛΛΟΟΟ	ΛΟΛΛΟΟΛΤΟΛ		ΛΑΤΟΟΛΟΟΤΟ	ΛΛΛΛΟΟΟΤΤΛ	CCCTACCCAC
00701	ACCCCCCCCC		TCACCUTCTA	ATTACCALL	ATCAAAAGGG	ACAAGCATCA	AGCACGCAGC	AATGCAGCTC	AAAACGCTTA	GLETAGELAC
00801	ACCCCCACGG	GAAACAGCAG	IGATTAACCI	TTAGCAATAA	ACGAAAGTTT	AACTAAGCTA	TACTAACCCC	AGGGIIGGIC	AATTICGIGC	CAGLCALLGL
00901	GGTCACACGA	TTAACCCAAG	TCAATAGAAA	CCGGCGTAAA	GAGTGTTTTA	GATCACCCCC	TCCCCAATAA	AGCTAAAACT	CACCTGAGTT	GTAAAAAACT
01001	CCAGTTGACA	CAAAATAGAC	TACGAAAGTG	GCTTTAACAT	ATCTGAACAC	ACAATAGCTA	AGACCCAAAC	TGGGATTAGA	TACCCCACTA	TGCTTAGCCC
01101	ТАААССТСАА	CAGTTAAATC	AACAAAACTG	CTCGCCAGAA	CACTACGAGC	CACAGCTTAA	AACTCAAAGG	ACCTGGCGGT	GCTTCATATC	CCTCTAGAGG
01201	AGCCTGTTCT	GTAATCGATA	AACCCCGATC	ΑΔΟΟΤΟΔΟΓΑ	CCTCTTGCTC	AGCCTATATA	CCGCCATCTT	CAGCAAACCC	TGATGAAGGC	ΤΑΓΑΑΑGΤΑΑ
01201	CCCCAAGTAC	ССАССТАААС	ΛΓΩΤΤΛΩΩΤΟ		ССАТСАССТС	CONCANATO	CCCTACATTT			TAGCCCTTAT
01301	CAAACTTAAC	CCACGIAAAG	ACOTTAGOTC	CTAAACTCAC	ACTACACTCC	TTACTTCAAC	ACCCCCCTCA	ACCCCCTACA	CACCCCCCCC	CACCECTECTE
01401	GAAACTTAAG	GGTCGAAGGT	GGATTTAGCA	GTAAACTGAG	AGTAGAGTGC	TTAGTTGAAC	AGGGCCCTGA	AGCGCGTACA	CALLGULLGI	
01501	AAGTATACTT	CAAAGGACAT	TTAACTAAAA	CCCCTACGCA	IIIAIAIAGA	GGAGACAAG I	CGTAACATGG	TAAGIGIACI	GGAAAGIGCA	CIIGGACGAA
01601	CCAGAGTGTA	GCTTAACACA	AAGCACCCAA	CTTACACTTA	GGAGATTTCA	ACTTAACTTG	ACCGCTCTGA	GCTAAACCTA	GCCCCAAACC	CACTCCACCT
01701	TACTACCAGA	CAACCTTAGC	CAAACCATTT	ACCCAAATAA	AGTATAGGCG	ATAGAAATTG	AAACCTGGCG	CAATAGATAT	AGTACCGCAA	GGGAAAGATG
01801	ΑΔΑΔΑΤΤΑΤΑ	ACCAAGCATA	ATATAGCAAG	GACTAACCCC	TATACCTTCT	GCATAATGAA	TTAACTAGAA	ATAACTTTGC	AAGGAGAACC	AAAGCTAAGA
01001		CAGACGAGCT	ΑΓΓΤΑΑGΑΑΓ	ΔΩCTAAAAGA	GCACACCCGT	CTATGTAGCA	ΔΔΔΤΔΩΤΩΩΩ	ΔΑGΑΤΤΤΑΤΑ	GGTAGAGGCG	ΛΟΛΛΛΟΟΤΛΟ
01001	CCACCCTCCT	CATACCTCCT	TCTCCAACAT		TTCAACTTTA			TAAATCCCCT	TCTAAATTTA	ΛΟΤΩΤΤΛΩΤΩ
02001	CAAACACCAA	CACCECTETTE	CACACTACCA	AGAAICITAG	TACACACACT	AAAAAATTTA				ACTOTIACIC
02101	CAAAGAGGAA	CAGCICITIG	GACACTAGGA	AAAAACCIIG	TAGAGAGAGI	AAAAAATTTA	ACALLCATAG	TAGGCCTAAA	AGCAGCCACC	AATTAAGAAA
02201	GCGTTCAAGC	TCAACACCCA	CTACCTAAAA	AATCCCAAAC	ATATAACIGA	ACICCICACA	CCCAATIGGA	CCATCIAIC	ACCUTATAGA	AGAACTAATG
02301	TTAGTATAAG	TAACATGAAA	ACATICICCI	CCGCATAAGC	CIGCGICAGA	TTAAAACACT	GAACIGACAA	TTAACAGCCC	AATATCTACA	ATCAACCAAC
02401	AAGTCATTAT	TACCCTCACT	GTCAACCCAA	CACAGGCATG	CTCATAAGGA	AAGGTTAAAA	AAAGTAAAAG	GAACTCGGCA	AATCTTACCC	CGCCTGTTTA
02501	CCAAAAACAT	CACCTCTAGC	ATCACCAGTA	TTAGAGGCAC	CGCCTGCCCA	GTGACACATG	TTTAACGGCC	GCGGTACCCT	AACCGTGCAA	AGGTAGCATA
02601	ATCACTTGTT	CCTTAAATAG	GGACCTGTAT	GAATGGCTCC	ACGAGGGTTC	AGCTGTCTCT	TACTTTTAAC	CAGTGAAATT	GACCTGCCCG	TGAAGAGGCG
02701	GGCATGACAC	AGCAAGACGA	GAAGACCCTA	TGGAGCTTTA	ΔΤΤΤΔΤΤΔΑΤ	GCAAACAGTA	ΓΓΤΑΑΓΑΑΑΓ	CCACAGGTCC	ΤΑΔΑΓΤΑΓΓΑ	ΔΑΓΓΤΩΓΑΤΤ
02201		GTTGGGGGGGA		GAACCCAACC	TCCGAGCAGT	ΔΟΔΤΩΟΤΑΛΩ		TCAAAGCGAA	СТАСТАТАСТ	CAATTGATCC
02001			AACTTACCCT		CCCCANTCCT	ATTCTACACT				TCTTCCATCA
02901	AATAACTIGA		AAGTTACCCT	AGGGATAACA	TTCAACCATT	ALICIAGAGI	CTATATCAAC		ACGACCICGA	CTCCCTTTCT
03001	GGACATCCCG	AIGGIGCAGC	CGCTATTAAA	GGIICGIIIG	TICAACGATT	AAAGICCIAC	GIGAICIGAG	TICAGACCGG	AGTAATCCAG	GICGGIIICI
03101	ATCTACNTTC	AAATTCCTCC	CTGTACGAAA	GGACAAGAGA	AATAAGGCCT	ACTTCACAAA	GCGCCTTCCC	CCGTAAATGA	ТАТСАТСТСА	ACTTAGTATT
03201	ATACCCACAC	CCACCCAAGA	ACAGGGTTTG	TTAAGATGGC	AGAGCCCGGT	AATCGCATAA	AACTTAAAAC	TTTACAGTCA	GAGGTTCAAT	тсстсттстт
03301	AACAACATAC	CCATGGCCAA	CCTCCTACTC	CTCATTGTAC	CCATTCTAAT	CGCAATGGCA	TTCCTAATGC	TTACCGAACG	ΑΑΑΑΑΤΤΟΤΑ	GGCTATATAC
03401	AACTACGCAA	AGGCCCCAAC	GTTGTAGGCC	CCTACGGGCT	ACTACAACCC	TTCGCTGACG	CCATAAAACT	CTTCACCAAA	GAGCCCCTAA	AACCCGCCAC
03501	ATCTACCATC	ΑΓΓ	TCACCGCCCC	GACCTTAGCT	CTCACCATCG	CTCTTCTACT	ATGAACCCCC	CTCCCCATAC	CCAACCCCCT	GGTCAACCTC
03601	ΔΔΟΟΤΔΟΘΟΟ	ΤΓΓΤΑΤΤΤΑΤ	ΤΓΤΔGCCΔCC	ΤΓΤΔGCCTΔG	CCGTTTACTC	ΔΔΤΓΓΤΓΓ	тсасстсас	CATCAAACTC		
02701	CACTECEACE				CCTACCCATC	ATTCTACTAT	CAACATTACT		тосттталос	
03701	TATCACAACA	CAACAACACC	TCTCATTACT	CCTCCCATCA	TCACCCATC	CCATAATATC	ATTTATCTCC	ACACTACCAC		AACCCCCTTC
03001	TATCACAACA		TCTGATTACT	TCIGCCATCA	IGACCUITGG	CCATAATATG	ATTAICICC	ACACTAGCAG	AGACCAACCG	AACCCCCTTC
03901	GACCIIGCCG	AAGGGGAGTC	CGAACTAGTC	TCAGGCTTCA	ACATCGAATA	CGCCGCAGGC		IATICITCAT	AGCCGAATAC	ACAAACATTA
04001	ΤΤΑΤΑΑΤΑΑΑ	CACCCTCACC	ACTACAATCT	TCCTAGGAAC	AACATATGAC	GCACTCTCCC	CTGAACTCTA	CACAACATAT	TTTGTCACCA	AGACCCTACT
04101	TCTAACCTCC	CTGTTCTTAT	GAATTCGAAC	AGCATACCCC	CGATTCCGCT	ACGACCAACT	CATACACCTC	CTATGAAAAA	ACTTCCTACC	ACTCACCCTA
04201	GCATTACTTA	TATGACATGT	CTCCATACCC	ATTACAATCT	CCAGCATTCC	CCCTCAAACC	TAAGAAATAT	GTCTGATAAA	AGAGTTACTT	TGATAGAGTA
04301	AATAATAGGA	GCTTAAACCC	CCTTATTTCT	AGGACTATGA	GAATCGAACC	CATCCCTGAG	AATCCAAAAT	TCTCCGTGCC	ACCTATCACA	CCCCATCCTA
04401	AAGTAAGGTC	ΑGCTAAATAA	GCTATCGGGC	CCATACCCCG	AAAATGTTGG	ΤΤΑΤΑΓΩ	CCCGTACTAA	ΤΤΑΑΤΟΟΟΤ	000A0000	GTCATCTACT
0/1501	CTACCATCTT	TGCAGGCACA	CTCATCACAG	CGCTAAGCTC	GCACTGATTT	тттасствая		ΔΑΤΑΔΑΓΑΤΟ		TTCCAGTTCT
04601		ATAAACCCTC	CTTCCACACA	ACCTCCCATC	AACTATTTCC	TCACCCAACC			TAATACCTAT	
04001				AUCTOCCATC	AAGIATITCC	ATCATTAATA	AACCOCATCC	CTATACCAAT		ATACCCCCCT
04701	AATATACICI	CCGGACAATG	AACCATAACC	AATACTACCA	ATCAATACTC	ATCATTAATA	ATCATAATGG	CTATAGCAAT	AAAACTAGGA	ATAGLUCUT
04801	TICACITCIG	AGICCCAGAG	GITACCCAAG	GCACCCCTCT	GACATCCGGC	CIGCIICIIC	ICACAIGACA	AAAACTAGCC	CCCATCICAA	ICATATACCA
04901	AATCTCTCCC	TCACTAGACG	TAAGCCTTCT	CCTCACTCTC	TCAATCTTAT	CCATCATAGC	AGGCAGTTGA	GGTGGATTAA	ACCAAACCCA	GCTACGCAAA
05001	ATCTTAGCAT	ACTCCTCAAT	TACCCACATA	GGATGAATAA	TAGCAGTTCT	ACCGTACAAC	CCTAACATAA	CCATTCTTAA	TTTAACTATT	TATATTATCC
05101	TAACTACTAC	CGCATTCCTA	CTACTCAACT	TAAACTCCAG	CACCACAACC	CTACTACTAT	CTCGCACCTG	AAACAAGCTA	ACATGACTAA	CACCCTTAAT
05201	TCCATCCACC	стестетесс	TAGGAGGCCT	GCCCCCGCTA	ACCGGCTTTT	TGCCCAAATG	GGCCATTATC	GAAGAATTCA	СААААААСАА	TAGCCTCATC
05301	ΑΤΓΓΓΓΑΓΓΑ	TCATAGCCAC		CTTAACCTCT	ΑΓΤΤΟΤΑΓΟΤ	ΑΓΩΓΓΤΑΑΤΟ	ΤΑΓΤΛΑΓ	ΓΑΑΤΓΑΓΑΓΤ	ΑΓΤΓΓΓΓΑΤΑ	TCTAACAACG
05/01	ΤΛΛΛΛΑΤΛΛΛ		GAACATACAA					CTACTCCTA		CTTTTATACT
05401		TACAAATTTA	CCTTAAATAC	ACACCAACAC		CCTCACTAAC	TTCCANTACT	TAATTTCTCT		CACTCCAAAA
05501				AGACCAAGAG		CCTTAGTAAG	ACCANTOCO		CAAAGCICAAG	
02001	LUCCALICIG	CATCAACTGA	ACGCAAATCA	GCCACITIAA	TTAAGCTAAG	CUCTTACTAG	ACCAATGGGA		CAAACACITA	GITAACAGCI
05/01	AAGCACCCTA	ATCAACTGGC	TICAATCIAC	IICICCGCC	GCCGGGAAAA	AAGGCGGGAG	AAGCCCCGGC	AGGIIIGAAG	CIGCITCIIC	GAATTIGCAA
05801	TTCAATATGA	AAATCACCTC	GGAGCTGGTA	AAAAGAGGCC	TAACCCCTGT	CTTTAGATTT	ACAGTCCAAT	GCTTCACTCA	GCCATTTTAC	CTCACCCCCA
05901	CTGATGTTCG	CCGACCGTTG	ACTATTCTCT	ACAAACCACA	AAGACATTGG	AACACTATAC	CTATTATTCG	GCGCATGAGC	TGGAGTCCTA	GGCACAGCTC
06001	TAAGCCTCCT	TATTCGAGCC	GAGCTGGGCC	AGCCAGGCAA	CCTTCTAGGT	AACGACCACA	TCTACAACGT	TATCGTCACA	GCCCATGCAT	TTGTAATAAT
06101	CTTCTTCATA	GTAATACCCA	TCATAATCGG	AGGCTTTGGC	AACTGACTAG	TTCCCCTAAT	AATCGGTGCC	CCCGATATGG	CGTTTCCCCG	CATAAACAAC
06201	ATAAGCTTCT	GACTCTTACC	тесстетете	CTACTCCTGC	TCGCATCTGC	TATAGTGGAG	GCCGGAGCAG	GAACAGGTTG	AACAGTCTAC	CCTCCCTTAG
06301	ΓΔGGGΔΔCTΔ		GGAGCCTCCG	ΤΔGΔCCTΔΔC		ΤΤΔΟΔΟΟΤΔΟ	CAGGTGTCTC	CTCTATCTTA	GGGGCCATCA	ΔΤΤΤΓΔΤΓΔΓ
06401		ΔΑΤΑΤΑΛΑΛΟ	CCCCTGCCAT			тоттостото			TCCTACTTCT	CULATULE
00401	CCACTCCTAC	CTCCTCCCAT	CACTATACTA	CTAACACACAC	CCAACCTCAA		TTCCACCCC		ACACCCCATT	
00501		ATTTTTCCCT	CACTATACTA		GLAACUICAA	CACCACCTIC	TILGALLUG		AGACCCCATT	
00001	ACCIAITCIG	AIIIIICGGI	CACCCIGAAG		TATCCIACCA	GGCTTCGGAA	TAATCICCCA	TATIGTAACT	TACTACTCCG	GAAAAAAAGA
06701	ACCATTTGGA	TACATAGGTA	TGGTCTGAGC	TATGATATCA	ATTGGCTTCC	TAGGGTTTAT	CGTGTGAGCA	CACCATATAT	TTACAGTAGG	AATAGACGTA
06801	GACACACGAG	CATATTTCAC	CTCCGCTACC	ATAATCATCG	CTATCCCCAC	CGGCGTCAAA	GTATTTAGCT	GACTCGCCAC	ACTCCACGGA	AGCAATATGA
06901	AATGATCTGC	TGCAGTGCTC	TGAGCCCTAG	GATTCATCTT	TCTTTTCACC	GTAGGTGGCC	TGACTGGCAT	TGTATTAGCA	AACTCATCAC	TAGACATCGT
07001	ACTACACGAC	ACGTACTACG	TTGTAGCTCA	CTTCCACTAT	GTCCTATCAA	TAGGAGCTGT	ATTTGCCATC	ATAGGAGGCT	TCATTCACTG	ATTTCCCCTA
07101	TTCTCAGGCT	ACACCCTAGA	CCAAACCTAC	GCCAAAATCC	ATTTCACTAT	CATATTCATC	GGCGTAAATC	TAACTTTCTT	CCCACAACAC	TTTCTCGGCC
07201	TATCCGGAAT	GCCCCGACGT	TACTOGGACT	ACCCCGATGC	ΑΤΑΓΑΓΓΑΓΑ	TGAAACATCC	TATCATCTGT	AGGCTCATTC	ΑΤΤΤΟΤΟΤΑΔ	CAGCAGTAAT
07201	ΔΤΤΔΔΤΛΛΤΤ	ΤΤΓΔΤΩΛΤΤΤ	Γ Δ <u>Γ</u> ΔΔ <u>Γ</u> ΓΤΤ	CGCTTCGAAG	ΓΓΑΔΔΔΛΩΤΓΓ	ΤΔΔΤΔΩΤΛΩΛ	ΔGΔΔCCCTCC	ΔΤΔΔΔΓΓΤΓΓ	ΔGTGΔCTΔTΔ	TGGATGCCCC
07401				TACATAAAAT	CTACACAAAA		TIGANCOCC	CAAACCTCCT	TTCAACCCAA	CCCCATGCCC
07501	TCCATCACTT	TTTCAAAAA	CTATTACAAA			AAUUAAUUAA	TATACCCTAA		TCTTATCCC	ACATOCACCO
0/501	ILLAIGALII	TITCAAAAAG	GIATIAGAAA	AACCATTICA	TAACTIIGIC	AAAGIIAAAI	TATAGGUTAA	AILCIAIAIA	ICITAATGGC	ACAIGCAGCG
0/601	CAAGTAGGTC	TACAAGACGC	TACTICCCCT	AICAIAGAAG	AGCITATCAC	CITICATGAT	LALGLUCTCA	IAAICAITTT	CUTATCTGC	TICCIAGTCC
07701	TGTATGCCCT	ТТТССТААСА	CTCACAACAA	ΑΑСΤΑΑСΤΑΑ	TACTAACATC	TCAGACGCTC	AGGAAATAGA	AACCGTCTGA	ACTATCCTGC	CCGCCATCAT
07801	CCTAGTCCTC	ATCGCCCTCC	CATCCCTACG	CATCCTTTAC	ATAACAGACG	AGGTCAACGA	TCCCTCCCTT	ACCATCAAAT	CAATTGGCCA	CCAATGGTAC
07901	TGAACCTACG	AGTACACCGA	CTACGGCGGA	CTAATCTTCA	ACTCCTACAT	ACTTCCCCA	TTATTCCTAG	AACCAGGCGA	CCTGCGACTC	CTTGACGTTG

www.dnaaccess.cor

00001	ΛΟΛΑΤΟΟΛΟΤ	ΛΟΤΛΟΤΟΟΟ	ΑΤΤΟΛΛΟΟΟΟ	CONTROLAT	ΛΑΤΛΑΤΤΑCA	тследледсе	тоттослото	ΑΤΟΛΟΟΤΟΤΟ	CCCACATTAC	CCTTAAAAAC
00001	ACAATCOAGT	AGTACICCO	ATTGAAGCCC	CLATTCOLAT	AATAATTACA	TCACAAGACG	CTACCCTCA	ATGAGCIGIC	TCTCTCCACATIAG	GUTTAAAAAC
08101	AGAIGCAAII	CCCGGACGIC	TAAACCAAAC	CACITICACC	GUTACACGAC	CGGGGGGTATA	CTACGGTCAA	IGCICIGAAA	TCTGTGGAGC	AAACCACAGI
08201	TTCATGCCCA	TCGTCCTAGA	ATTAATTCCC	СТАААААТСТ	TTGAAATAGG	GCCCGTATTT	ACCCTATAGC	ACCCCCTCTA	CCCCCTCTAG	AGCCCACTGT
08301	AAAGCTAACT	TAGCATTAAC	CTTTTAAGTT	AAAGATTAAG	AGAACCAACA	CCTCTTTACA	GTGAAATGCC	CCAACTAAAT	ACTACCGTAT	GGCCCACCAT
08401	AATTACCCCC	ATACTCCTTA	CACTATTCCT	CATCACCCAA	СТАААААТАТ	TAAACACAAA	CTACCACCTA	CCTCCCTCAC	CAAAGCCCAT	ΑΑΑΑΤΑΑΑΑ
08501	ΔΑΤΤΑΤΑΑCΑ	ΑΑΓΓΓΤΓΑΑ	ΑΓΓΑΔΑΔΤΓΑ	ΑΓGΑΑΑΑΤCT	GTTCGCTTCA	TTCATTGCCC	ΓΓΑΓΑΑΤΟΓΤ	AGGCCTACCC	GCCGCAGTAC	TGATCATTCT
00601		CTATTCATCC	CCACCTCCAA	ΑΤΑΤΟΤΟΑΤΟ		татсассас	CCAACAATCA			ΛΟΛΛΑΤΛΑΤΛ
00001	ATTICCCCT			TCTCTTATC	TACTATCOT	AATCALLAC		CTAATCAAAC		
08/01	ACCATACACA	ACACTAAAGG	ACGAACCIGA	TCTCTTATAC	TAGTATCCTT	AAICAIIIII	ATTGCCACAA	CTAACCTCCT	CGGACICCIG	CUTCACICAT
08801	TTACACCAAC	CACCCAACTA	ТСТАТАААСС	TAGCCATGGC	CATCCCCTTA	TGAGCGGGCG	CAGTGATTAT	AGGCTTTCGC	TCTAAGATTA	AAAATGCCCT
08901	AGCCCACTTC	TTACCACAAG	GCACACCTAC	ACCCCTTATC	CCCATACTAG	TTATTATCGA	AACCATCAGC	CTACTCATTC	AACCAATAGC	CCTGGCCGTA
09001	CGCCTAACCG	CTAACATTAC	TGCAGGCCAC	CTACTCATGC	ACCTAATTGG	AAGCGCCACC	CTAGCAATAT	CAACCATTAA	CCTTCCCTCT	ACACTTATCA
09101	TCTTCACAAT	ΤΟΤΑΑΤΤΟΤΑ	CTGACTATCC	TAGAAATCGC	TGTCGCCTTA	ATCCAAGCCT	ACGTTTTCAC	ACTTCTAGTA	AGCCTCTACC	TGCACGACAA
00201			ΑΓΑΤΩΓΟΤΑΤ	CATATAGTAA		ΑΤGΑCCCCTA		TCTCAGCCCT	CCTAATGACC	тессосстас
00201	CONTETENT	TCACTTCCAC	TCCATAACCC	TCCTCATACT		ACCAACACAC	TAACCATATA		CCCCATCTAA	
09501	CLAIGIGATT	CCCCACCACA	CACCACCTCT	CCANADACCC	AGGULIALIA	ACCAACACAC	ATTTATTACC		COCGATGIAA	
09401		GGCCACCACA	CACCACCIGI	CCAAAAAGGC	CITCGATACG	GGATAATCCT	ATTIATIACC	TCAGAAGIII	TITICITUSC	AGGATITIC
09501	IGAGCCIIII	ACCACICCAG	CCTAGCCCCT	ACCCCCCAAT	TAGGAGGGCA	CIGGCCCCCA	ACAGGCATCA	CCCCGCTAAA	ICCCCIAGAA	GILLCALICC
09601	TAAACACATC	CGTATTACTC	GCATCAGGAG	TATCAATCAC	CTGAGCTCAC	CATAGTCTAA	TAGAAAACAA	CCGAAACCAA	ATAATTCAAG	CACTGCTTAT
09701	TACAATTTTA	CTGGGTCTCT	ATTTTACCCT	CCTACAAGCC	TCAGAGTACT	TCGAGTCTCC	CTTCACCATT	TCCGACGGCA	TCTACGGCTC	AACATTTTTT
09801	GTAGCCACAG	GCTTCCACGG	ACTTCACGTC	ATTATTGGCT	CAACTTTCCT	CACTATCTGC	TTCATCCGCC	AACTAATATT	TCACTTTACA	TCCAAACATC
09901	ACTTTGGCTT	CGAAGCCGCC	GCCTGATACT	GGCATTTTGT	AGATGTGGTT	TGACTATTTC	TGTATGTCTC	CATCTATTGA	TGAGGGTCTT	ACTCTTTTAG
10001	ΤΔΤΔΔΔΤΔGΤ	ΔΟΟΩΤΤΔΔΟΤ	ΤΓΓΔΑΤΤΔΑΓ	ΤΔGTTTTGΔC	ΔΔΓΔΤΤΓΔΔΔ	ΔΔΔGΔGTΔΔΤ	ΔΔΔΩΤΤΓΩΟΟ	ΤΤΔΔΤΤΤΤΔΔ	ΤΔΑΤΓΔΑΓΑΓ	CCTCCTAGCC
10101	TTACTACTAA	TAATTATTAC	ATTTCACTA		ACCCCTACAT		ACCCCTTACC	ACTOCOCTT		
10101			ATTITGACIA		ACGGCTACAT	AGAAAAATCC	ALLULTIALG	AGIGLGGCII	CUALCUTATA	
10201	GUGIUUUIII	CICCATAAAA	TICTICITAG	TAGCTATTAC	CTICITATIA	TITGATCIAG	AAATTGCCCT		CTACCATGAG	
10301	AACTAACCTG	CCACTAATAG	TTATGTCATC	CCTCTTATTA	ATCATCATCC	TAGCCCTAAG	TCTGGCCTAT	GAGTGACTAC	AAAAAGGATT	AGACTGAACC
10401	GAATTGGTAT	ATAGTTTAAA	CAAAACGAAT	GATTTCGACT	CATTAAATTA	TGATAATCAT	ATTTACCAAA	TGCCCCTCAT	TTACATAAAT	ATTATACTAG
10501	CATTTACCAT	CTCACTTCTA	GGAATACTAG	TATATCGCTC	ACACCTCATA	TCCTCCCTAC	TATGCCTAGA	AGGAATAATA	CTATCGCTGT	TCATTATAGC
10601	TACTCTCATA	ACCCTCAACA	CCCACTCCCT	CTTAGCCAAT	ATTGTGCCTA	TTGCCATACT	AGTCTTTGCC	GCCTGCGAAG	CAGCGGTGGG	CCTAGCCCTA
10701	CTAGTCTCAA	ΤΟΤΟΟΑΛΟΤΟΤ	ATATGGCCTA	GACTACGTAC	ΑΤΑΑCCTAAA	ΑΑΟΟΤΟΑΤΟ	TGCTAAAACT	AATCGTCCCA	ΑCAATTATAT	TACTACCACT
10801	GACATGACTT	ΤΓΓΔΔΔΔΔΔΔ	ΔΓΔΤΔΔΤΤΤΓ	ΔΔΤΓΔΔΓΔΓΔ	ΔΓΓΔΓΓΓΔΓΔ	GCCTAATTAT	ΤΔGCΔTCΔTC		ΤΤΤΤΤΔΔ((Δ	ΔΔΤΓΔΔΓΔΔΓ
10001	ΔΑΓΩΤΑΤΤΤΑ	CCTGTTCCCC		тесслессе		CCTCCTAATA	CTAACTACCT	GACTCCTACC	CCTCACAATC	
10901	AACCIAITIA		AACCTITICC				CLAACIACCI	GACICCIACC		CACCCACAC
11001	AACGCCACTT	ATCCAGIGAA	CCACTATCAC	GAAAAAAACT	CTACCICICI	ATACTAATCT	CULTACAAAT	CICCITAATI	ATAACATICA	CAGLCACAGA
11101	ACTAATCATA	TITIATATCI	TCTTCGAAAC	CACACITATC	CCCACCIIGG	CTATCATCAC	CCGATGAGGC	AACCAGCCAG	AACGCCTGAA	CGCAGGCACA
11201	TACTTCCTAT	TCTACACCCT	AGTAGGCTCC	CTTCCCCTAC	TCATCGCACT	GATTTACACT	CACAACACCC	TAGGCTCACT	AAACATTCTA	CTACTCACTC
11301	TCACTGCCCA	AGAACTATCA	AACTCCTGAG	CCAACAACTT	AATATGACTA	GCTTACACAA	TAGCTTTTAT	AGTAAAGATA	CCTCTTTACG	GACTCCACTT
11401	ATGACTCCCT	AAAGCCCATG	TCGAAGCCCC	CATCGCTGGG	TCAATAGTAC	TTGCCGCAGT	ACTCTTAAAA	CTAGGCGGCT	ATGGTATAAT	ACGCCTCACA
11501	CTCATTCTCA	ACCCCCTGAC	ΑΑΑΑCΑCΑΤΑ	GCCTACCCCT	TCCTTGTACT	ATCCCTATGA	GGCATAATTA	TAACAAGCTC	CATCTGCCTA	CGACAAACAG
11601	ΑΓΓΤΑΔΑΔΤΓ	GCTCATTGCA	ΤΑΓΤΓΤΤΓΑΑ	TCAGCCACAT	AGCCCTCGTA	GTAACAGCCA	ΤΤΓΤΓΑΤΓΓΑ	ΑΑΓΓΓΓΤΓΑ	AGCTTCACCG	GCGCAGTCAT
11701	тстсатаатс			ΑΤΤΛΟΤΑΤΤΟ	TECCTACCAA		CGAACGCACT		тсатаатсст	
11001		TCCTCCCACT	ATACCTTT	TCATCACTTC	TACCAACCCT	CCCTAACTA	CCCTTACCCC	CACAGICOCA		
11001		CACCETTOTO	AATAGCIIII	TGATGACTIC		CUCTAACCIC	GUUTTAULUU	CCACTATIAA	CTCTACIGGGA	GAACICICIG
11901	IGCIAGIAAC	CACGITCICC	IGAICAAAIA	TCACICICCI	ACTIACAGGA	CICAACATAC	TAGTCACAGC			TTACCACAAC
12001	ACAATGGGGC	TCACTCACCC	ACCACATTAA	СААСАТАААА	CCCTCATTCA	CACGAGAAAA	CACCCTCATG	TTCATACACC	TATCCCCCAT	тстсстсста
12101	TCCCTCAACC	CCGACATCAT	TACCGGGTTT	TCCTCTTGTA	AATATAGTTT	AACCAAAACA	TCAGATTGTG	AATCTGACAA	CAGAGGCTTA	CGACCCCTTA
12201	TTTACCGAGA	AAGCTCACAA	GAACTGCTAA	CTCATGCCCC	CATGTCTAAC	AACATGGCTT	TCTCAACTTT	TAAAGGATAA	CAGCTATCCA	TTGGTCTTAG
12301	GCCCCAAAAA	TTTTGGTGCA	ΑСТССАААТА	AAAGTAATAA	CCATGCACAC	TACTATAACC	ACCCTAACCC	TGACTTCCCT	AATTCCCCCC	ATCCTTACCA
12401	CCCTCGTTAA	СССТААСААА	ΑΑΑΑΑ	ΑΓΓΓ	TGTAAAATCC	ATTGTCGCAT	CCACCTTTAT	TATCAGTCTC	TTCCCCACAA	CAATATTCAT
12501	GTGCCTAGAC		TTATCTCCAA				GCTCTCCCTA			СТССАТААТА
12501	TTCATCCCTC	TACCATTCTT	CCTTACATCO	TCCATCATAC	OCCACAACCC	CTCATATATA		CAAACATTAA	TAGACTACTT	
12001	TICATCCCTG	TAGCATIGIT	CUTTACATOG	TUCATCATAG	AATTCTCACT	GIGATATATA	AACTCAGACC	CAAACATTAA	ICAGITUTIC	AAATATCTAC
12701	ICAICIICCI	AATTACCATA	CIAAICIIAG	TTACCGCTAA	CAACCIATIC	CAACIGIICA	ICGGCIGAGA	GGGCGTAGGA	ATTATATCCT	ICTIGCICAT
12801	CAGTTGATGA	TACGCCCGAG	CAGATGCCAA	CACAGCAGCC	ATTCAAGCAA	ТССТАТАСАА	CCGTATCGGC	GATATCGGTT	TCATCCTCGC	CTTAGCATGA
12901	TTTATCCTAC	ACTCCAACTC	ATGAGACCCA	CAACAAATAG	CCCTTCTAAA	CGCTAATCCA	AGCCTCACCC	CACTACTAGG	CCTCCTCCTA	GCAGCAGCAG
13001	GCAAATCAGC	CCAATTAGGT	CTCCACCCCT	GACTCCCCTC	AGCCATAGAA	GGCCCCACCC	CAGTCTCAGC	CCTACTCCAC	TCAAGCACTA	TAGTTGTAGC
13101	AGGAATCTTC	TTACTCATCC	GCTTCCACCC	CCTAGCAGAA	AATAGCCCAC	TAATCCAAAC	TCTAACACTA	TGCTTAGGCG	CTATCACCAC	TCTGTTCGCA
13201	GCAGTCTGCG	CCCTTACACA	AAATGACATC	AAAAAAATCG	TAGCCTTCTC	CACTTCAAGT	CAACTAGGAC	TCATAATAGT	TACAATCGGC	ATCAACCAAC
13301	CACACCTAGC	ATTCCTGCAC	ATCTGTACCC	ACGCCTTCTT	CAAAGCCATA	CTATTTATGT	GCTCCGGATC	CATCATCCAC	ΔΔΟΟΤΤΔΔΟΔ	ΑΤGΑΑCΑΑGΑ
13/01	TATTCGAAAA		ΤΛΟΤΟΛΛΑΔΟ			CCCTCACCAT		GCATTAGCAG	GAATACCTTT	CCTCACAGGT
12501	TTCTACTCCA			CCAAACATAT		CCCCTCACCC	CTATCTATTA	CTCTCATCCC		ACAACCCCCT
13501	ITCIACICCA	AAGACCACAT	CATCGAAACC	GLAAACATAT	CATACACAAA	LGCCTGAGCC	CIAICIAITA	CICICATCGC	TACCICCUIG	ACAAGCGCCT
13001	ATAGCACTCG	AATAATICTT	CICACCCIAA	CAGGICAACC	ICGCIICCC	ACCCITACIA	ACATTAACGA	AAATAACCCC	ACCCIACIAA	ACCCCATTAA
13701	ACGCCTGGCA	GCCGGAAGCC	TATTCGCAGG	ATTTCTCATT	ΑСТААСААСА	TTTCCCCCGC	ATCCCCCTTC	CAAACAACAA	тессестета	ССТААААСТС
13801	ACAGCCCTCG	CTGTCACTTT	CCTAGGACTT	CTAACAGCCC	TAGACCTCAA	CTACCTAACC	AACAAACTTA	AAATAAAATC	CCCACTATGC	ACATTTTATT
13901	TCTCCAACAT	ACTCGGATTC	TACCCTAGCA	TCACACACCG	CACAATCCCC	TATCTAGGCC	TTCTTACGAG	CCAAAACCTG	CCCCTACTCC	TCCTAGACCT
14001	AACCTGACTA	GAAAAGCTAT	ТАССТААААС	AATTTCACAG	CACCAAATCT	CCACCTCCAT	CATCACCTCA	ACCCAAAAAG	GCATAATTAA	ACTTTACTTC
14101	СТСТСТТТСТ	TCTTCCCACT	CATCCTAACC	СТАСТССТАА	TCACATAACC	TATTCCCCCG	AGCAATCTCA	ATTACAATAT	ATACACCAAC	AAACAATGTT
14201	(ΔΔ(ΓΔΩΤΛΛ		TLATCOLOCA	ΤΔGTCΔTACA	AAGCCCCCCCC	ΔΓΓΔΔΤΛΩΩΛ	TUTTUUGAA	ΤΓΔΑΓΓΓΤΩΑ		ΤΓΔΤΔΔΔΤΤΛ
1/201	TTCACCTTCC			CAACCACCAC	CCCATCATAC	TCTTTCACCC	ACAGCACCAA	TCCTACCTICA		
14201			CTCACCCCCA		TACTOCTO	TACCONTOCO	TCTACTATAT		CONTENTES	
14401	ACICALCAAG	ACCICAACCC	CATATALCO	IGULILAGGA	TACICULAA	TAGLCATCGC				
14501	ATTAAAAAAA	CIAIIAAACC	CATATAACCT	LULLUAAAAT	ICAGAATAAT	AALALACCCG	ALLALACCGC	ΙΑΑCΑΑΤCΑΑ	TACTAAACCC	CLATAAATAG
14601	GAGAAGGCTT	AGAAGAAAAC	CCCACAAACC	CCATTACTAA	ACCCACACTC	AACAGAAACA	AAGCATACAT	CATTATTCTC	GCACGGACTA	CAACCACGAC
14701	CAATGATATG	AAAAACCATC	GTTGTATTTC	AACTACAAGA	ACACCAATGA	CCCCAATACG	CAAAATTAAC	ССССТААТАА	ΑΑΤΤΑΑΤΤΑΑ	CCACTCATTC
14801	ATCGACCTCC	CCACCCCATC	CAACATCTCC	GCATGATGAA	ACTTCGGCTC	ACTCCTTGGC	ACCTGCCTGA	TCCTCCAAAT	CACCACAGGA	CTATTCCTAG
14901	CCATACACTA	CTCACCAGAC	GCCTCAACCG	CCTTTTCATC	AATCGCCCAC	ATCACTCGAG	ACGTAAATTA	TGGCTGAATC	ATCCGCTACC	TTCACGCCAA
15001	TGGCGCCTCA	ATATTCTTTA	TCTGCCTCTT	CCTACACATC	GGGCGAGGCC	TATATTACGG	ATCATTTCTC	TACTCAGAAA	CCTGAAACAT	CGGCATTATC
15101	СТССТОСТТО	CAACTATAGC	AACAGCCTTC	ATAGGCTATG	тсстсссате	ΑGGCCAAATA	TCATTCTGAG	GGGCCACAGT	ΑΑΤΤΑΓΑΔΑΓ	TTACTATCCG
15201		CATTGGGACA	GACCTAGTTC	ΔΑΤGΔΔΤCTC	ΔGGΔGGCTAC	ΤΓΔGΤΔGΛCΛ	GTCCCACCCT		ΤΤΤΑΓΓΤΤΤ	ΔΟΤΤΟΔΤΟΤΤ
10201	CONTECCATA	S. TI I SOUACA	5.100110			. CHO HOACA	CI CCCACCCI	C. C. COATTC		

15301 GCCCTTCATT ATTGCAGCCC TA 15401 ACCTTCCACC CTTACTACAC A 15501 ACCCAGACAA TTATACCCTA G 15601 TAACAAGCTA GGAGGCGTCC T 15701 CCACTAAGCC AATCACTTTA T 15801 AAGTAGCATC CGTACTATAC T 15901 AAACTAATAC ACCAGTCTTG TA	AGCAGCACT CCACCTCCTA TTCTTGCACG ATCAAAGAC GCCCTCGGCT TACTTCTCTT CCAACCCCT TAAACACCCC TCCCCACATC TGCCCTATT ACTATCCATC CTCATCCTAG TGACTCCTA GCCGCAGACC TCCTCATTCT TCACAACAA TCCTAATCCT AATACCAACT AAACCGAAG ATGAAAACCT TTTTCCAAGG	AAACGGGATC AAACAACCCC CTAGGAATCA CATTCTCTCC TTAATGACAT TAACACTATT AAGCCCGAAT GATATTTCCT ATTCGCCTAC CAATAATCCC CATCCTCCAT ATATCCAAAC AACCTGAATC GGAGGACAAC CAGTAAGCTA ATCTCCCTAA TTGAAAACAA AATACTCAAA ACAAATCAGA GAAAAAGTCT TTAACTCCAC	CCTCCCATTC CGATAAAATC CTCACCAGAC CTCCTAGGCG ACAATTCTCC GATCCGTCCC AACAAAGCAT AATATTTCGC CCCTTTTACC ATCATTGGAC TGGGCCTGTC CTTGTAGTAT CATTAGCACC CAAAGCTAAG
Cod	ing Region Qualified Cambridge R	eference Sequence (rCRS) variati	ons
Nucleotide Position	Region	Variant Type	Nucleotide Change
00709	Coding Region	Substitution	G>A
00750	Coding Region	Substitution	A>G
00930	Coding Region	Substitution	G>A
01438	Coding Region	Substitution	A>G
01888	Coding Region	Substitution	G>A
02706	Coding Region	Substitution	A>G
04216	Coding Region	Substitution	T>C
04769	Coding Region	Substitution	A>G
04917	Coding Region	Substitution	A>G
05147	Coding Region	Substitution	G>A
07028	Coding Region	Substitution	C>T
08697	Coding Region	Substitution	G>A
08860	Coding Region	Substitution	A>G
11251	Coding Region	Substitution	A>G
11719	Coding Region	Substitution	G>A
11812	Coding Region	Substitution	A>G
13368	Coding Region	Substitution	G>A
14233	Coding Region	Substitution	A>G
14766	Coding Region	Substitution	C>T
14861	Coding Region	Substitution	G>A
14905	Coding Region	Substitution	G>A
15326	Coding Region	Substitution	A>G
15452	Coding Region	Substitution	C>A
15607	Coding Region	Substitution	A>G
15928	Coding Region	Substitution	G>A

mtDNA Haplogroup and Subclade

Brian Nicholas Rossiter has tested the HVR1, HVR2 and Coding regions of his mtDNA.

The results of Brian Nicholas Rossiter's mtDNA HVR1, HVR2 and Coding Region test show that he is positive for 35 mutations: 16051, 16126, 16294, 16296, 16304, 16519, 73, 263, 309, 315, 709, 750, 930, 1438, 1888, 2706, 4216, 4769, 4917, 5147, 7028, 8697, 8860, 11251, 11719, 11812, 13368, 14233, 14766, 14861, 14905, 15326, 15452, 15607, and 15928. These 35 mutations in Brian Nicholas Rossiter's mtDNA confirm that he is a descendant of mtDNA Haplogroup T, subclade T2b13a on his maternal line.

The woman who founded mtDNA Haplogroup T lived approximately 30,000 to 60,000 years ago in the Near East (Mesopotamia).

Descendents of the mtDNA Haplogroup T line moved north and west into Eastern Europe approximately 10,000 years ago. Today, descendants of mtDNA Haplogroup T are found in highest concentrations in Eastern Europe, Russia (Baltic Sea and Urals) and the Middle East. Notable historical figures who belonged to mtDNA Haplogroup T include Tsar Nicholas II of Russia and American outlaw Jesse James.

Origins and Distribution

Population studies have not yet been published for mtDNA Subclade T2b13a. However, population studies are available for the direct ancestors of mtDNA Subclade T2b13a. Population studies to date have found that the ancestors of T2b13a are found in the highest concentration in West Eurasian from Southern Germany. The percentage of each indigenous population which belong to mtDNA Subclade T2b13a is not yet available, however, the distribution of mtDNA Subclade T2b13a is as follows:

West Eurasian from Southern Germany > Murcia, Spain > Pas Valley, Northern Spain > North Europeans from Estonia and Sweden > Central Portugal > North Portugal > Ogliastra in Sardinia, Italy > Western Pomerania, Germany

Family Vault DNA Database Usage

The genetic sequence of Brian Nicholas Rossiter's mtDNA HVR1, HVR2 and Coding regions qualify for FamilyVault DNA database search and analysis features. The FamilyVault DNA Ancestry database allows you to:

- Search for potential family links
- Compare against indigenous populations from around the world
- Find out more about your haplogroup and view a map of your ancestor's ancient migration patterns
- Compare against famous people in history
- Store and share your DNA data, collaborate with family members and organize results from other members of your family

Refer to page 2 of this report for instructions on how to login to your account. After logging in to your account, follow these basic steps to begin searching:

1. To view which specific country or population group is the closest match to Brian Nicholas Rossiter's maternal lineage, click "DNA Ancestry", then select "Indigenous DNA".

2. To find potential relatives along Brian Nicholas Rossiter's direct maternal lineage, click "DNA Ancestry", then select "DNA Reunion" to view Brian Nicholas Rossiter's maternal line matches.

3. To view Brian Nicholas Rossiter's haplogroup and migration map, click "DNA Ancestry", then select "DNA Haplogroups".

4. To compare Brian Nicholas Rossiter's DNA markers against famous historical figures, click "DNA Ancestry", then select "Famous DNA".

5. To download additional copies of your report or to share your report with family members, click "My Results", then click on the PDF logo to download the report or click "Share" to share the report.

If you have any questions or require technical support, click "Help" and submit a ticket to our support team 24/7.

Appendix 1: mtDNA Phylogenetic Tree

The placement of mtDNA Haplogroup T in the mtDNA phylogenetic tree is as follows:

The major branches (mtDNA haplogroups) of the mtDNA phylogenetic tree are shown above. The origin of the tree represents the Mitochondrial Eve (MRCA), a name given by researchers to the most recent common matrilineal ancestor of all humans living today. The origin of the tree dates back approximately 100,000 to 250,000 years.

Appendix 2: mtDNA Maternal Line Migration Map

Population	Population belonging to T2b13a	Population belonging to T2b13	Population belonging to T2b	Population belonging to T2	Population belonging to T	Study Size	Reference
West Eurasian from Southern Germany	n/a	n/a	8%	11%	14%	100	Application of a quasi-median network analysis for the visualization of character conflicts to a population sample of mitochondrial DNA control region sequences from southern Germany (Ulm). Brandstätter A et al Int J Legal Med. 2006 Sep;120(5):310-4
Murcia, Spain	n/a	n/a	6.8%	9.1%	18.2%	44	Mitochondrial DNA and Y-chromosome structure at the Mediterranean and Atlantic façades of the Iberian Peninsula. Santos C et al Am J Hum Biol. 2014 Mar-Apr;26(2):130-41
Pas Valley, Northern Spain	n/a	n/a	6.56%	19.68%	19.68%	61	Variability of the entire mitochondrial DNA control region in a human isolate from the Pas Valley (northern Spain). Cardoso S et al J Forensic Sci. 2010 Sep;55(5):1196-201
North Europeans from Estonia and Sweden	n/a	n/a	6.3%	8.8%	8.8%	79	Evaluation of the 124-plex SNP typing microarray for forensic testing. Krjutskov K et al Forensic Sci Int Genet. 2009 Dec;4(1):43-8.
Central Portugal	n/a	n/a	5.6%	8.5%	19.2%	391	Mitochondrial DNA and Y-chromosome structure at the Mediterranean and Atlantic façades of the Iberian Peninsula. Santos C et al Am J Hum Biol. 2014 Mar-Apr;26(2):130-41
North Portugal	n/a	n/a	5.1%	7.2%	23%	470	Mitochondrial DNA and Y-chromosome structure at the Mediterranean and Atlantic façades of the Iberian Peninsula. Santos C et al Am J Hum Biol. 2014 Mar-Apr;26(2):130-41
Ogliastra in Sardinia, Italy	n/a	n/a	4.76%	9.52%	9.52%	63	High resolution analysis and phylogenetic network construction using complete mtDNA sequences in sardinian genetic isolates. Fraumene C et al Mol Biol Evol. 2006 Nov;23(11):2101-11. Epub 2006 Aug 10.
Western Pomerania, Germany	n/a	n/a	4.7%	4.7%	8.7%	300	Mitochondrial diversity of a northeast German population sample. Poetsch M et al Forensic Sci Int. 2003 Nov 26;137(2-3):125-32.
Sicily	n/a	n/a	4.53%	10.37%	16.83%	155	Human mitochondrial DNA variation in Southern Italy. Ottoni C et al Ann Hum Biol. 2009 Nov-Dec;36(6):785-811.
Galicia, Spain	n/a	n/a	4.3%	7.2%	17%	555	Mitochondrial DNA and Y-chromosome structure at the Mediterranean and Atlantic façades of the Iberian Peninsula. Santos C et al Am J Hum Biol. 2014 Mar-Apr;26(2):130-41
Vojvodina, Serbia	n/a	n/a	3.84%	5.76%	10.56%	104	Sequence polymorphism of the mitochondrial DNA control region in the population of Vojvodina Province, Serbia. Zgonjanin D et al Leg Med (Tokyo). 2010 Mar;12(2):104-7.
Catalonia, Spain	n/a	n/a	3.8%	7.3%	20.3%	469	Mitochondrial DNA and Y-chromosome structure at the Mediterranean and Atlantic façades of the Iberian Peninsula. Santos C et al Am J Hum Biol. 2014 Mar-Apr;26(2):130-41
Slovenia	n/a	n/a	3.8%	3.8%	5.8%	104	Mitochondrial DNA variability in Bosnians and Slovenians. Malyarchuk BA et al Ann Hum Genet. 2003 Sep;67(Pt 5):412-25.
Satakunta, Finland	n/a	n/a	3.57%	3.57%	3.57%	28	Finnish mitochondrial DNA HVS-I and HVS-II population data. Hedman M et al Forensic Sci Int. 2007 Oct 25;172(2-3):171-8. Epub 2007 Mar 2.
Varsinais-Suomi, Finland	n/a	n/a	3.45%	6.9%	10.35%	29	Finnish mitochondrial DNA HVS-I and HVS-II population data. Hedman M et al Forensic Sci Int. 2007 Oct 25;172(2-3):171-8. Epub 2007 Mar 2.
Italy	n/a	n/a	3.4%	6.4%	13%	395	Italian mitochondrial DNA database: results of a collaborative exercise and proficiency testing. Turchi C et al Int J Legal Med. 2008 May:122(3):199-204.
Basilicata, Italy	n/a	n/a	3.26%	7.62%	9.8%	92	Human mitochondrial DNA variation in Southern Italy. Ottoni C et al Ann Hum Biol. 2009 Nov-Dec;36(6):785-811.
Northern Central Italy	n/a	n/a	3.1%	9.6%	13.4%	384	Multiplex mtDNA coding region SNP assays for molecular dissection of haplogroups U/K and J/T. Grignari P et al Forensic Sci Int Genet. 2009 Dec;4(1):21-5.
Tatars in Buinsk	n/a	n/a	3.1%	4.7%	5.5%	126	Mitogenomic diversity in Tatars from the Volga-Ural region of Russia Malyarchuk B et al Mol Biol Evol. 2010 May 10.
Non-Ashkenazi Jews in Turkey	n/a	n/a	2.5%	9%	10.6%	123	Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Behar DM et al PLoS One. 2008 Apr 30;3(4):e2062.
Vasterbotten, Sweden	n/a	n/a	2.5%	5%	7.5%	40	Homogeneity in mitochondrial DNA control region sequences in Swedish subpopulations. Tillmar AO et al Int J Legal Med. 2010 Mar;124(2):91-8.
Gotland, Sweden	n/a	n/a	2.5%	2.5%	5%	40	Homogeneity in mitochondrial DNA control region sequences in Swedish subpopulations. Tillmar AO et al Int J Legal Med. 2010 Mar;124(2):91-8.
Varmland, Sweden	n/a	n/a	2.38%	4.76%	4.76%	42	Homogeneity in mitochondrial DNA control region sequences in Swedish subpopulations. Tillmar AO et al Int J Legal Med. 2010 Mar;124(2):91-8.
Macedonians in Republic of Macedonia	n/a	n/a	2.24%	4.48%	10.64%	179	Mitochondrial DNA control region population data from Macedonia. Zimmermann B et al Forensic Sci Int Genet. 2007 Dec;1(3-4):e4-9. Epub 2007 May 9.
South Portugal	n/a	n/a	2.2%	3.3%	8.8%	268	Mitochondrial DNA and Y-chromosome structure at the Mediterranean and Atlantic façades of the Iberian Peninsula. Santos C et al Am J Hum Biol. 2014 Mar-Apr;26(2):130-41
Valencia, Spain	n/a	n/a	2%	4.8%	8.8%	250	Mitochondrial DNA and Y-chromosome structure at the Mediterranean and Atlantic façades of the Iberian Peninsula. Santos C et al Am J Hum Biol. 2014 Mar-Apr;26(2):130-41
Dubrovnik, Croatia	n/a	n/a	1.65%	2.2%	2.2%	182	Influence of evolutionary forces and demographic processes on the genetic structure of three Croatian populations: a maternal perspective. Sarac J et al Ann Hum Biol. 2012 Mar;39(2):143-55.
Finland	n/a	n/a	1.55%	3.11%	5.7%	194	Finnish mitochondrial DNA HVS-I and HVS-II population data. Hedman M et al Forensic Sci Int. 2007 Oct 25:172(2-3):171-8. Eoub 2007 Mar 2.

Appendix 3: Population Distribution Frequency of mtDNA Haplogroup T2b13a in Europe

Mljet, Croatia	n/a	n/a	1.47%	1.47%	1.47%	68	Influence of evolutionary forces and demographic processes on the genetic structure of three Croatian populations: a maternal perspective. Śarac J et al Ann Hum Biol. 2012 Mar;39(2):143-55.
Non-Ashkenazi Jews in Bulgaria	n/a	n/a	1.4%	11.3%	12.7%	71	Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Behar DM et al PLoS One. 2008 Apr 30;3(4):e2062.
Bosians in Bosnia-Herzegovina	n/a	n/a	1.4%	1.4%	4.8%	144	Mitochondrial DNA variability in Bosnians and Slovenians. Malyarchuk BA et al Ann Hum Genet. 2003 Sep;67(Pt 5):412-25.
Basques in Northern Spain	n/a	n/a	0.94%	1.88%	1.88%	106	Mitochondrial DNA control region variation in an autochthonous Basque population sample from the Basque Country. Cardoso S et al Forensic Sci Int Genet. 2012 Jul;6(4):e106-8.
Ashkenazi Jews in Hungary	n/a	n/a	0.58%	0.58%	2.9%	173	Mitochondrial DNA control region variation in Ashkenazi Jews from Hungary. Brandstätter A et al Forensi: Sci Int Genet. 2008 Jan;2(1):e4-6.
Denmark	n/a	n/a	0.5%	5.51%	8.51%	199	Mitochondrial DNA HV1 and HV2 variation in Danes. Mitkelsen M et al Forensic Sci Int Genet. 2010 Jul;4(4):e87-8.
Southeastern Cabo Verde Islands	n/a	n/a	0.5%	0.5%	0.5%	108	Mitochondrial portrait of the Cabo Verde archipelago: the Senegambian outpost of Atlantic slave trade. Brehm A et al Ann Hum Genet. 2002 Jan;66(Pt 1):49-60.
Lower Carniola, Slovenia	n/a	n/a	n/a	11.5%	24.8%	113	The maternal perspective for five Slovenian regions: The importance of regional sampling. Zupan A et al Ann Hum Biol. 2015 Jun 12:1-10.
Vallepietra, Italy	n/a	n/a	n/a	10.87%	39.13%	46	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8;27(4):508-19.
Volterra, Italy	n/a	n/a	n/a	10.5%	13.1%	114	Mitochondrial DNA variation of modern Tuscans supports the near eastern origin of Etruscans. Achilli A et al Am J Hum Genet. 2007 Apr;80(4):759-68.
Ostergotland/Jonkoping, Sweden	n/a	n/a	n/a	10%	12.5%	40	Homogeneity in mitochondrial DNA control region sequences in Swedish subpopulations. Tilimar AO et al Int J Legal Med. 2010 Mar;124(2):91-8.
Prekmurje, Slovenia	n/a	n/a	n/a	9.8%	27%	82	The maternal perspective for five Slovenian regions: The importance of regional sampling. Zupan A et al Ann Hum Biol. 2015 Jun 12:1-10.
Calabria, Italy	n/a	n/a	n/a	9.47%	14.72%	95	Human mitochondrial DNA variation in Southern Italy. Ottoni C et al Ann Hum Biol. 2009 Nov-Dec;36(6):785-811.
Slovenia	n/a	n/a	n/a	8.7%	21.2%	402	The maternal perspective for five Slovenian regions: The importance of regional sampling. Zupan A et al Ann Hum Biol. 2015 Jun 12:1-10.
Styria, Slovenia	n/a	n/a	n/a	8.7%	23.2%	103	The maternal perspective for five Slovenian regions: The importance of regional sampling. Zupan A et al Ann Hum Biol. 2015 Jun 12:1-10.
North Portugal	n/a	n/a	n/a	8.33%	16.66%	84	Mitochondrial DNA affnities at the Atlantic fringe of Europe. González AM et al Am J Phys Anthropol. 2003 Apr;120(4):391-404.
Russia Ashkenazi Jews	n/a	n/a	n/a	8.2%	9.84%	61	The matrilineal ancestry of Ashkenazi Jewry: portrait of a recent founder event Behar DM et al Am J Hum Genet. 2006 Mar;78(3):487-97. Epub 2006 Jan 11.
Littoral region, Slovenia	n/a	n/a	n/a	8.2%	16.4%	49	The maternal perspective for five Slovenian regions: The importance of regional sampling. Zupan A et al. Ann Hum Biol. 2015 Jun 12:1-10.
Murlo, Italy	n/a	n/a	n/a	8.1%	9.3%	86	Mitochondrial DNA variation of modern Tuscans supports the near eastern origin of Etruscans. Achili A et al Am J Hum Genet. 2007 Apr;80(4):759-68.
Latvia	n/a	n/a	n/a	7.74%	9.42%	298	Mitochondrial DNA portrait of Latvians: towards the understanding of the genetic structure of Baltic-speaking populations. Pliss L et al Ann Hum Genet. 2006 ul;70(Pt 4):439-58.
Austria/Hungary Ashkenazi Jews	n/a	n/a	n/a	7.4%	7.4%	27	The matrilineal ancestry of Ashkenazi Jewry: portrait of a recent founder event Behar DM et al Am J Hum Genet. 2006 Mar;78(3):487-97. Epub 2006 Jan 11.
Tuscany Casentino Valley, Italy	n/a	n/a	n/a	7.4%	10.7%	122	Mitochondrial DNA variation of modern Tuscans supports the near eastern origin of Etruscans. Achili A et al Am J Hum Genet. 2007 Apr;80(4):759-68.
Eastern Azores Islands, Portugal	n/a	n/a	n/a	6%	8%	50	Genetic structure and origin of peopling in the Azores islands (Portugal): the view from mtDNA. Santos C et al Ann Hum Genet. 2003 Sep;67(Pt 5):433-56.
Saracinesco, Italy	n/a	n/a	n/a	5.71%	11.42%	35	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8;27(4):508-19.
Upper Carniola, Slovenia	n/a	n/a	n/a	5.5%	14.6%	55	The maternal perspective for five Slovenian regions: The importance of regional sampling. Zupan A et al Ann Hum Biol. 2015 Jun 12:1-10.
Modern Hungarian-speaking Seklers from Romanian Transylvania	n/a	n/a	n/a	5.5%	16.1%	75	Comparison of maternal lineage and biogeographic analyses of ancient and modern Hungarian populations. Tömöry G et al Am J Phys Anthropol. 2007 Nov;134(3):354-68.
Finistère, Morbihan, Normandy, Périgord-Limousin and Var, France	n/a	n/a	n/a	5.22%	11.08%	153	mtDNA polymorphisms in five French groups: importance of regional sampling. Dubut V et al Eur J Hum Genet. 2004 Apr;12(4):293-300.
Central Azores Islands, Portugal	n/a	n/a	n/a	5.01%	8.34%	60	Genetic structure and origin of peopling in the Azores islands (Portugal): the view from mtDNA. Santos C et al Ann Hum Genet. 2003 Sep;67(Pt 5):433-56.
Hungary	n/a	n/a	n/a	5%	9%	101	Comparison of maternal lineage and biogeographic analyses of ancient and modern Hungarian populations. Tömöry G et al Am J Phys Anthropol. 2007 Nov;134(3):354-68.
Finistère, Morbihan, Normandy, Périgord-Limousin and Var, France	n/a	n/a	n/a	4.91%	11.79%	203	mtDNA polymorphisms in five French groups: importance of regional sampling. Dubut V et al Eur J Hum Genet. 2004 Apr;12(4):293-300.

Skaraborg, Sweden	n/a	n/a	n/a	4.88%	14.64%	41	Homogeneity in mitochondrial DNA control region sequences in Swedish subpopulations. Tilimar AO et al Int J Legal Med. 2010 Mar;124(2):91-8.
Azores, Portugal	n/a	n/a	n/a	4.78%	7.51%	146	Genetic structure and origin of peopling in the Azores islands (Portugal): the view from mtDNA. Santos C et al Ann Hum Genet. 2003 Sep;67(Pt 5):433-56.
Netherlands Ashkenazi Jews	n/a	n/a	n/a	4.76%	4.76%	21	The matrilineal ancestry of Ashkenazi Jewry: portrait of a recent founder event Behar DM et al Am J Hum Genet. 2006 Mar;78(3):487-97. Epub 2006 Jan 11.
Finistère, Morbihan, Normandy, Périgord-Limousin and Var, France	n/a	n/a	n/a	4.64%	10.44%	173	mtDNA polymorphisms in five French groups: importance of regional sampling. Dubut V et al Eur J Hum Genet. 2004 Apr;12(4):293-300.
Portugal	n/a	n/a	n/a	3.98%	8.64%	299	Mitochondrial DNA affinities at the Atlantic fringe of Europe. González AM et al Am J Phys Anthropol. 2003 Apr;120(4):391-404.
Ukraine Ashkenazi Jews	n/a	n/a	n/a	3.78%	5.67%	53	The matrilineal ancestry of Ashkenazi Jewry: portrait of a recent founder event Behar DM et al Am J Hum Genet. 2006 Mar;78(3):487-97. Epub 2006 Jan 11.
Savo, Finland	n/a	n/a	n/a	3.57%	7.14%	28	Finnish mitochondrial DNA HVS-I and HVS-II population data. Hedman M et al Forencis Cci Int. 2007 Oct 25;172(2-3):171-8. Epub 2007 Mar 2.
Ashkenazi Jews	n/a	n/a	n/a	3.38%	4.62%	568	The matrilineal ancestry of Ashkenazi Jewry: portrait of a recent founder event Behar DM et al Am J Hum Genet. 2006 Mar;78(3):487-97. Epub 2006 Jan 11.
Cappadocia, Turkey	n/a	n/a	n/a	3.37%	12.36%	89	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8;27(4):508-19.
Sephardic Jews	n/a	n/a	n/a	3.23%	6.46%	31	Mitochondrial DNA sequence variation in Jewish populations. Picornell A et al Int J Legal Med. 2006 Sep;120(5):271-81.
Romania Ashkenazi Jews	n/a	n/a	n/a	3.09%	3.09%	97	The matrilineal ancestry of Ashkenazi Jewry: portrait of a recent founder event Behar DM et al Am J Hum Genet. 2006 Mar;78(3):487-97. Epub 2006 Jan 11.
Bulgaria	n/a	n/a	n/a	3.06%	12.24%	196	Bulgarians vs the other European populations: a mitochondrial DNA perspective. Karachanak S et al Int J Legal Med. 2012 Jul;126(4):497-503.
Jenne, Italy	n/a	n/a	n/a	2.91%	5.82%	103	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8;27(4):508-19.
Western Azores Islands, Portugal	n/a	n/a	n/a	2.78%	5.56%	36	Genetic structure and origin of peopling in the Azores islands (Portugal): the view from mtDNA. Santos C et al Ann Hum Genet. 2003 Sep;67(Pt 5):433-56.
Blekinge and Kristianstad, Sweden	n/a	n/a	n/a	2.56%	5.12%	39	Homogeneity in mitochondrial DNA control region sequences in Swedish subpopulations. Tilimar AO et al Int J Legal Med. 2010 Mar;124(2):91-8.
Central Portugal	n/a	n/a	n/a	2.56%	5.12%	78	Mitochondrial DNA affinities at the Atlantic fringe of Europe. González AM et al Am J Phys Anthropol. 2003 Apr;120(4):391-404.
Pasiegos in Cantabria, Spain	n/a	n/a	n/a	2.44%	6.1%	82	Y chromosome and mitochondrial DNA characterization of Pasiegos, a human isolate from Cantabria (Spain). Maca-Meyer N et al Ann Hum Genet. 2003 Jul;67(Pt 4):329-39.
Galician in Canary Islands, Spain	n/a	n/a	n/a	2.33%	4.66%	43	Mitochondrial DNA affinities at the Atlantic fringe of Europe. González AM et al Am J Phys Anthropol. 2003 Apr;120(4):391-404.
Non-Pasiego and Non-Lebaniego Cantabrians in Cantabria, Spain	n/a	n/a	n/a	2.28%	4.56%	88	Y chromosome and mitochondrial DNA characterization of Pasiegos, a human isolate from Cantabria (Spain). Maca-Meyer N et al Ann Hum Genet. 2003 Jul;67(Pt 4):329-39.
Almeria, Spain	n/a	n/a	n/a	2.2%	4.4%	91	Mitochondrial DNA and Y-chromosome structure at the Mediterranean and Atlantic façades of the Iberian Peninsula. Santos C et al Am J Hum Biol. 2014 Mar-Apr;26(2):130-41
Portuguese in South Portugal	n/a	n/a	n/a	2.19%	5.84%	137	Mitochondrial DNA affinities at the Atlantic fringe of Europe. González AM et al Am J Phys Anthropol. 2003 Apr;120(4):391-404.
Uppsala, Sweden	n/a	n/a	n/a	1.85%	5.55%	54	Homogeneity in mitochondrial DNA control region sequences in Swedish subpopulations. Tilimar AO et al Int J Legal Med. 2010 Mar;124(2):91-8.
Basques in Spain	n/a	n/a	n/a	1.8%	1.8%	55	Mitochondrial DNA haplogroup diversity in Basques: a reassessment based on HVI and HVII polymorphisms. Alfonso-Sánchez MA et al Am J Hum Biol. 2008 Mar-Apr;20(2):154-64.
Trevi nel Lazio, Italy	n/a	n/a	n/a	1.72%	24.12%	58	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8;27(4):508-19.
Oshevensk, Russia	n/a	n/a	n/a	1.33%	6.65%	75	Mitochondrial DNA variations in Russian and Belorussian populations. Belyaeva O et al Hum Biol. 2003 Oct;75(5):647-60.
Piglio, Italy	n/a	n/a	n/a	1.04%	6.24%	96	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8;27(4):508-19.
Austria	n/a	n/a	n/a	0.4%	13%	277	Rapid screening of mtDNA coding region SNPs for the identification of west European Caucasian haplogroups Brandstätter A et al Int J Legal Med (2003) 117 : 291-298.
Eastern Vlax Roma in Croatia	n/a	n/a	n/a	n/a	5.17%	232	The role of the Vlax Roma in shaping the European Romani maternal genetic history. Sailhović MP et al Am J Phys Anthropol. 2011 Oct;146(2):262-70.
Northwestern Vlax Roma, Croatia	n/a	n/a	n/a	n/a	1.97%	152	The role of the Vlax Roma in shaping the European Romani maternal genetic history. Sailhović MP et al Am J Phys Anthropol. 2011 Oct;146(2):262-70.
South Portugal	n/a	n/a	n/a	n/a	10.32%	58	Diversity of mtDNA lineages in Portugal: not a genetic edge of European variation. Pereira L et al Ann Hum Genet. 2000 Nov;64(Pt 6):491-506.
Central Portugal	n/a	n/a	n/a	n/a	10.8%	83	Diversity of mtDNA lineages in Portugal: not a genetic edge of European variation. Pereira L et al Ann Hum Genet. 2000 Nov;64(Pt 6):491-506.

North Portugal	n/a	n/a	n/a	n/a	11.11%	99	Diversity of mtDNA lineages in Portugal: not a genetic edge of European variation. Pereira L et al Ann Hum Genet. 2000 Nov;64(Pt 6):491-506.
Andalusia, Spain	n/a	n/a	n/a	n/a	10%	50	Mitochondrial DNA characterisation of European isolates: the Maragatos from Spain. Larruga JM et al Eur J Hum Genet. 2001 Sep;9(9):708-16.
Castile, Spain	n/a	n/a	n/a	n/a	7.89%	38	Mitochondrial DNA characterisation of European isolates: the Maragatos from Spain. Larruga JM et al Eur I Hum Genet. 2001 Seo:9(9):708-16.
Leonese in Iberian Peninsula	n/a	n/a	n/a	n/a	4.92%	61	Mitochondrial DNA characterisation of European isolates: the Maragatos from Spain. Larruga JM et al Eur J Hum Genet. 2001 Sep;9(9):708-16.
Maragatos in Astorga, Spain	n/a	n/a	n/a	n/a	4.08%	49	Mitochondrial DNA characterisation of European isolates: the Maragatos from Spain. Larruga JM et al Eur J Hum Genet. 2001 Sep;9(9):708-16.
Hvar, Croatia	n/a	n/a	n/a	n/a	13.91%	108	The evidence of mtDNA haplogroup F in a European population and its ethnohistoric implications. Tolk HV et al Eur J Hum Genet. 2001 Sep;9(9):717-23.
Northern Savo, Finland	n/a	n/a	n/a	n/a	1%	100	Evidence for mtDNA admixture between the Finns and the Saami. Meinilä M et al Hum Hered. 2001;52(3):160-70.
Kainuu, Finland	n/a	n/a	n/a	n/a	0.96%	104	Evidence for mtDNA admixture between the Finns and the Saami. Meinilä M et al Hum Hered. 2001;52(3):160-70.
Northern Ostrobothnia, Finland	n/a	n/a	n/a	n/a	8.08%	99	Evidence for mtDNA admixture between the Finns and the Saami. Meinilä M et al Hum Hered. 2001;52(3):160-70.
Bashkiria, Russia	n/a	n/a	n/a	n/a	3.6%	83	Mitochondrial DNA variations in Russian and Belorussian populations. Belyaeva O et al Hum Biol. 2003 Oct;75(5):647-60.
Belorussians in Russia	n/a	n/a	n/a	n/a	6.53%	92	Mitochondrial DNA variations in Russian and Belorussian populations. Belyaeva O et al Hum Biol. 2003 Oct;75(5):647-60.
Morbihan, France	n/a	n/a	n/a	n/a	7.32%	41	An mtDNA perspective of French genetic variation. Richard C et al Ann Hum Biol. 2007 Jan-Feb;34(1):68-79.
Finistere, France	n/a	n/a	n/a	n/a	6.65%	120	An mtDNA perspective of French genetic variation. Richard C et al Ann Hum Biol. 2007 Jan-Feb;34(1):68-79.
Loire-Atlantique, France	n/a	n/a	n/a	n/a	6.65%	75	An mtDNA perspective of French genetic variation. Richard C et al Ann Hum Biol. 2007 Jan-Feb;34(1):68-79.
Pyrénnées-Atlantiques, France	n/a	n/a	n/a	n/a	3.7%	81	An mtDNA perspective of French genetic variation. Richard C et al Ann Hum Biol. 2007 Jan-Feb;34(1):68-79.
Sarthe, France	n/a	n/a	n/a	n/a	8.34%	36	An mtDNA perspective of French genetic variation. Richard C et al Ann Hum Biol. 2007 Jan-Feb;34(1):68-79.
Maine et Loire, France	n/a	n/a	n/a	n/a	16.38%	55	An mtDNA perspective of French genetic variation. Richard C et al Ann Hum Biol. 2007 Jan-Feb;34(1):68-79.
Somme, France	n/a	n/a	n/a	n/a	12.81%	78	An mtDNA perspective of French genetic variation. Richard C et al Ann Hum Biol. 2007 Jan-Feb;34(1):68-79.
Hérault in Languedoc, France	n/a	n/a	n/a	n/a	15.31%	85	An mtDNA perspective of French genetic variation. Richard C et al Ann Hum Biol. 2007 Jan-Feb;34(1):68-79.
Calvados in France	n/a	n/a	n/a	n/a	2.17%	46	An mtDNA perspective of French genetic variation. Richard C et al Ann Hum Biol. 2007 Jan-Feb;34(1):68-79.
Vendée, France	n/a	n/a	n/a	n/a	5%	80	An mtDNA perspective of French genetic variation. Richard C et al Ann Hum Biol. 2007 Jan-Feb;34(1):68-79.
Lastovo, Croatia	n/a	n/a	n/a	n/a	3.92%	51	Influence of evolutionary forces and demographic processes on the genetic structure of three Croatian populations: a maternal perspective. Šarac J et al Ann Hum Biol. 2012 Mar;39(2):143-55.
Siwa Berbers in Tunisia	n/a	n/a	n/a	n/a	1.3%	77	The complex and diversified mitochondrial gene pool of Berber populations. Coudray C et al Ann Hum Genet. 2009 Mar;73(2):196-214. Epub 2008 Nov 27.
Pohjanmaa, Finland	n/a	n/a	n/a	n/a	3.45%	29	Finnish mitochondrial DNA HVS-I and HVS-II population data. Hedman M et al Forensic Sci Int. 2007 Oct 25;172(2-3):171-8. Epub 2007 Mar 2.
Karjala, Finland	n/a	n/a	n/a	n/a	3.33%	30	Finnish mitochondrial DNA HVS-I and HVS-II population data. Hedman M et al Forensic Sci Int. 2007 Oct 25;172(2-3):171-8. Epub 2007 Mar 2.
Slovenia	n/a	n/a	n/a	n/a	5.88%	102	Mitochondrial DNA variability in Bosnians and Slovenians. Malyarchuk BA et al Ann Hum Genet. 2003 Sep;67(Pt 5):412-25.
Bosnians in Bosnia-Herzegovina	n/a	n/a	n/a	n/a	4.91%	142	Mitochondrial DNA variability in Bosnians and Slovenians. Malyarchuk BA et al Ann Hum Genet. 2003 Sep;67(Pt 5):412-25.
Turgovzi Romani in Omurtag, Bulgaria	n/a	n/a	n/a	n/a	4%	25	Origins and divergence of the Roma (gypsies). Gresham D et al Am J Hum Genet. 2001 Dec;69(6):1314-31. Epub 2001 Nov 9.
Roma Gypsies from Northern Bulgaria in Kalderash	n/a	n/a	n/a	n/a	4.35%	23	Origins and divergence of the Roma (gypsies). Gresham D et al Am J Hum Genet. 2001 Dec;69(6):1314-31. Epub 2001 Nov 9.
Lom Romani in Lom, Bulgaria	n/a	n/a	n/a	n/a	2.33%	43	Origins and divergence of the Roma (gypsies). Gresham D et al Am J Hum Genet. 2001 Dec;69(6):1314-31. Epub 2001 Nov 9.
Monteni Romani in Balkan Mountain villages, Bulgaria	n/a	n/a	n/a	n/a	4.76%	42	Origins and divergence of the Roma (gypsies). Gresham D et al Am J Hum Genet. 2001 Dec;69(6):1314-31. Epub 2001 Nov 9.

French Ashkenazi Jews	n/a	n/a	n/a	n/a	4.26%	47	The matrilineal ancestry of Ashkenazi Jewry: portrait of a recent founder event Behar DM et al Am J Hum Genet. 2006 Mar;78(3):487-97. Epub 2006 Jan 11.
Chelha-speaking Jerbian Berbers in Jerba Island	n/a	n/a	n/a	n/a	15.4%	26	Islands inside an island: reproductive isolates on Jerba island Loueslati BY et al Am J Hum Biol. 2006 jan;18(1):149-53
Jerbian Arabs in Jerba Island	n/a	n/a	n/a	n/a	25.01%	24	Islands inside an island: reproductive isolates on Jerba island Loueslati BY et al Am J Hum Biol. 2006 jan;18(1):149-53
Finland	n/a	n/a	n/a	n/a	1.7%	403	Traces of early Eurasians in the Mansi of northwest Siberia revealed by mitochondrial DNA analysis. Derbeneva OA et al Am J Hum Genet. 2002 Apr;70(4):1009-14. Epub 2002 Feb 13.
Saami	n/a	n/a	n/a	n/a	n/a	176	Traces of early Eurasians in the Mansi of northwest Siberia revealed by mitochondrial DNA analysis. Derbeneva OA et al M J Hum Genet. 2002 Apr;70(4):1009-14. Epub 2002 Feb 13.
Mansi in Russia	n/a	n/a	n/a	n/a	10.3%	98	Traces of early Eurasians in the Mansi of northwest Siberia revealed by mitochondrial DNA analysis. Derbeneva OA et al Am J Hum Genet. 2002 Apr;70(4):1009-14. Epub 2002 Feb 13.
Mansi in Northern Sos'va River and Lyamin River Basin	n/a	n/a	n/a	n/a	15.4%	39	Traces of early Eurasians in the Mansi of northwest Siberia revealed by mitochondrial DNA analysis. Derbeneva OA et al Am J Hum Genet. 2002 Apr;70(4):1009-14. Epub 2002 Feb 13.
Mansi in Konda River, Russia	n/a	n/a	n/a	n/a	6.8%	59	Traces of early Eurasians in the Mansi of northwest Siberia revealed by mitochondrial DNA analysis. Derbeneva OA et al Am J Hum Genet. 2002 Apr;70(4):1009-14. Epub 2002 Feb 13.
Poland	n/a	n/a	n/a	n/a	11.5%	436	Russian Old Believers: genetic consequences of their persecution and exile, as shown by mitochondrial DNA evidence. Rubinstein S et al Hum Biol. 2008 Jun;80(3):203-37.
Slovenia	n/a	n/a	n/a	n/a	5.8%	104	Russian Old Believers: genetic consequences of their persecution and exile, as shown by mitochondrial DNA evidence. Rubinstein S et al Hum Biol. 2008 Jun;80(3):203-37.
Bosnians	n/a	n/a	n/a	n/a	4.9%	144	Russian Old Believers: genetic consequences of their persecution and exile, as shown by mitochondrial DNA evidence. Rubinstein S et al Hum Biol. 2008 Jun;80(3):203-37.
Russians in Eastern Europe	n/a	n/a	n/a	n/a	10.9%	201	Russian Old Believers: genetic consequences of their persecution and exile, as shown by mitochondrial DNA evidence. Rubinstein S et al Hum Biol. 2008 Jun;80(3):203-37.
Ancient Norwegians	n/a	n/a	n/a	n/a	2.33%	43	Mitochondrial DNA variation in the Viking age population of Norway. Krzewińska M et al Philos Trans R Soc Lond B Biol Sci. 2015 Jan 19;370(1660):20130384.
Norway	n/a	n/a	n/a	n/a	8.47%	838	Mitochondrial DNA variation in the Viking age population of Norway. Krzewińska M et al Philos Trans R Soc Lond B Biol Sci. 2015 Jan 19;370(1660):20130384.
Jenne, Italy	n/a	n/a	n/a	n/a	4.62%	65	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8;27(4):508-19.
Vallepietra, Italy	n/a	n/a	n/a	n/a	11.11%	18	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8;27(4):508-19.
Trevi nel Lazio, Italy	n/a	n/a	n/a	n/a	n/a	23	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8;27(4):508-19.
Saracinesco, Italy	n/a	n/a	n/a	n/a	7.69%	13	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8;27(4):508-19.
Piglio, Italy	n/a	n/a	n/a	n/a	n/a	47	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8;27(4):508-19.
Filettino, Italy	n/a	n/a	n/a	n/a	11.76%	17	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8:27(4):508-19.
Cappadocia, Turkey	n/a	n/a	n/a	n/a	9.26%	54	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8;27(4):508-19.
Filettino, Italy	n/a	n/a	n/a	n/a	16.28%	43	Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Messina F et al Am J Hum Biol. 2015 Jul 8:27(4):508-19.
Latvia	n/a	n/a	n/a	n/a	8.8%	114	Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians. Malmström H et al Curr Biol. 2009 Nov 3;19(20):1758-62.
Lithuania	n/a	n/a	n/a	n/a	10.4%	163	Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians. Malmström H et al Curr Biol. 2009 Nov 3;19(20):1758-62.
Estonia	n/a	n/a	n/a	n/a	13.7%	117	Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians. Malmström H et al Curr Biol. 2009 Nov 3;19(20):1758-62.
Saami	n/a	n/a	n/a	n/a	n/a	37	Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians. Malmström H et al Curr Biol. 2009 Nov 3;19(20):1758-62.
Sweden	n/a	n/a	n/a	n/a	7.6%	290	Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians. Malmström H et al Curr Biol. 2009 Nov 3;19(20):1758-62.
Tatars in Aznakaevo	n/a	n/a	n/a	n/a	8.4%	71	Mitogenomic diversity in Tatars from the Volga-Ural region of Russia Malyarchuk B et al Mol Biol Evol. 2010 May 10.
Slovenia	n/a	n/a	n/a	n/a	5.8%	104	Mitochondrial DNA variability in the Czech population, with application to the ethnic history of Slavs. Malyarchuk BA et al Hum Biol. 2006 Dec;78(6):681-96.
Bosnians	n/a	n/a	n/a	n/a	4.9%	144	Mitochondrial DNA variability in the Czech population, with application to the ethnic history of Slavs. Malyarchuk BA et al Hum Biol. 2006 Dec;78(6):681-96.
Czech in Western Bohemia, Czech Republic	n/a	n/a	n/a	n/a	12.3%	179	Mitochondrial DNA variability in the Czech population, with application to the ethnic history of Slavs. Malyarchuk BA et al Hum Biol. 2006 Dec;78(6):681-96.

Russians from three European regions of Russia (Stavropol region, Orel region, Saratov region)	n/a	n/a	n/a	n/a	11%	201	Mitochondrial DNA variability in Poles and Russians. Malyarchuk BA et al Ann Hum Genet. 2002 Jul;66(Pt 4):261-83.
Poles from the Pomerania-Kujawy region of Northern Poland	n/a	n/a	n/a	n/a	11.5%	436	Mitochondrial DNA variability in Poles and Russians. Malyarchuk BA et al Ann Hum Genet. 2002 Jul;66(Pt 4):261-83.
Northwestern Cabo Verde Islands	n/a	n/a	n/a	n/a	n/a	184	Mitochondrial portrait of the Cabo Verde archipelago: the Senegambian outpost of Atlantic slave trade. Brehm A et al Ann Hum Genet. 2002 Jan;66(Pt 1):49-60.
Belmonte Jews (Non-Ashkenazi) in Portugal	n/a	n/a	n/a	n/a	n/a	30	Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Behar DM et al PLoS One. 2008 Apr 30;3(4):e2062.
Tuscany, Italy	n/a	n/a	n/a	n/a	10.4%	48	Classification of European mtDNAs From an Analysis of Three European Populations. Torroni A et al Genetics. 1996 Dec;144(4):1835-50.
Sweden	n/a	n/a	n/a	n/a	21.6%	37	Classification of European mtDNAs From an Analysis of Three European Populations. Torroni A et al Genetics. 1996 Dec;144(4):1835-50.
Finland	n/a	n/a	n/a	n/a	6.1%	49	Classification of European mtDNAs From an Analysis of Three European Populations. Torroni A et al Genetics. 1996 Dec;144(4):1835-50.

Appendix 3: Population Distribution Frequency of mtDNA Haplogroup T2b13a in Middle East & Central Asia

Population	% of Population belonging to T2b13a	% of Population belonging to T2b13	% of Population belonging to T2b	% of Population belonging to T2	% of Population belonging to T	Study Size	Reference
Bedouins (Non-Jewish)	n/a	n/a	1.8%	8.7%	12.1%	58	Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Behar DM et al PLoS One. 2008 Apr 30;3(4):e2062.
Non-Ashkenazi Jews in Iran	n/a	n/a	1.2%	18.3%	20.7%	82	Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Behar DM et al PLoS One. 2008 Apr 30;3(4):e2062.
Druze in Israel	n/a	n/a	0.6%	0.6%	7.3%	311	The Druze: a population genetic refugium of the Near East. Shlush Ll et al PLoS One. 2008 May 7;3(5):e2105.
Non-Ashkenazi Jews in Iraq	n/a	n/a	n/a	20%	21.5%	135	Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Behar DM et al PLoS One. 2008 Apr 30;3(4):e2062.
Non-Ashkenazi Jews in Georgia	n/a	n/a	n/a	9.5%	9.5%	74	Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Behar DM et al PLoS One. 2008 Apr 30;3(4):e2062.
Non-Ashkenazi Jews in Azerbaijan	n/a	n/a	n/a	8.6%	8.6%	58	Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Behar DM et al PLoS One. 2008 Apr 30;3(4):e2062.
Oriental Jews	n/a	n/a	n/a	4.35%	8.7%	23	Mitochondrial DNA sequence variation in Jewish populations. Picornell A et al Int J Legal Med. 2006 Sep:120(5):271-81.
Non-Ashkenazi Jews in Yemen	n/a	n/a	n/a	0.8%	1.6%	119	Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Behar DM et al PLoS One. 2008 Apr 30;3(4):e2062.
Yemenite in Yemen	n/a	n/a	n/a	0.7%	9.84%	142	Mitochondrial DNA reveals distinct evolutionary histories for Jewish populations in Yemen and Ethiopia. Non AL et al Am J Phys Anthropol. 2011 Jan;144(1):1-10.
Shugnan in Tajikistan and High Pamirs	n/a	n/a	n/a	n/a	2.27%	44	Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Quintana-Murci L et al Am J Hum Genet. 2004 May;74(5):827-45. Epub 2004 Apr 7.Click here to read
Kurds in Turkmenistan	n/a	n/a	n/a	n/a	18.75%	32	Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Quintana-Murci L et al Am J Hum Genet. 2004 May;74(5):827-45. Epub 2004 Apr 7.Click here to read
Turkmenistan	n/a	n/a	n/a	n/a	7.32%	41	Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Quintana-Murci L et al Am J Hum Genet. 2004 May;74(5):827-45. Epub 2004 Apr 7.Click here to read
Uzbek in Surkhandarya, Uzbekistan	n/a	n/a	n/a	n/a	4.76%	42	Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Quintana-Murci L et al Am J Hum Genet. 2004 May;74(5):827-45. Epub 2004 Apr 7.Click here to read
Mazandarian in Northern Iran and Southwestern Caspian Sea Area	n/a	n/a	n/a	n/a	14.28%	21	Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Quintana-Murci L et al Am J Hum Genet. 2004 May;74(5):827-45. Epub 2004 Apr 7.Click here to read
Gilaki in Northern Iran and Southwestern Caspian Sea Area	n/a	n/a	n/a	n/a	16.21%	37	Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Quintana-Murci L et al Am J Hum Genet. 2004 May;74(5):827-45. Epub 2004 Apr 7.Click here to read
Turkish in Eastern and Western Azerbaijan	n/a	n/a	n/a	n/a	15%	40	Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Quintana-Murci L et al Am J Hum Genet. 2004 May;74(5):827-45. Epub 2004 Apr 7.Click here to read
Persian in Central and Southern Central Iran	n/a	n/a	n/a	n/a	9.52%	42	Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Quintana-Murci L et al Am J Hum Genet. 2004 May;74(5):827-45. Epub 2004 Apr 7.Click here to read

NetworkNo. <t< th=""><th>Southwest and Central Asia (Iran, Pakistan, Azerbaijan, India, Uzbekistan, Turkmenistan, Tajikistan)</th><th>n/a</th><th>n/a</th><th>n/a</th><th>n/a</th><th>6.64%</th><th>702</th><th>Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Quintana-Murci L et al Am J Hum Genet. 2004 May;74(5):827-45. Epub 2004 Apr 7.Click here to read</th></t<>	Southwest and Central Asia (Iran, Pakistan, Azerbaijan, India, Uzbekistan, Turkmenistan, Tajikistan)	n/a	n/a	n/a	n/a	6.64%	702	Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Quintana-Murci L et al Am J Hum Genet. 2004 May;74(5):827-45. Epub 2004 Apr 7.Click here to read
Yenneria Yenneria Yenneria Yenneria Yenneria NaNaPaPaPaPa PaPa 	Yemeni in Kuwait	n/a	n/a	n/a	n/a	0.87%	115	Ethiopian mitochondrial DNA heritage: tracking gene flow across and around the gate of tears. Kivisild T et al Am J Hum Genet. 2004 Nov;75(5):752-70. Epub 2004 Sep 27.
Network Synch Synch Synch Synch Synch Synch Synch Synch Synch 	Yemeni in East of Sana'a, Yemen	n/a	n/a	n/a	n/a	5%	40	Regional differences in the distribution of the sub-Saharan, West Eurasian, and South Asian mtDNA lineages in Yemen. Cerný V et al Am J Phys Anthropol. 2008 Jun;136(2):128-37.
Yemenin Yemenin Yemenin Yemenin Yemenin Yemenin Yemenin Yemenin Yemenin Yemenin Yemenin NaNaNaNaNaA.48%67Regional afferences in the distribution of the sub-Saharan, West Eurasian, and South Asian mtDNA lineages in Yemenin, Cerry V et al An J Prys Achropol. 2008 Jun 136(2):128-37.Yemenin Yemenin 	Yemeni in North of Sana'a, Yemen	n/a	n/a	n/a	n/a	5.72%	35	Regional differences in the distribution of the sub-Saharan, West Eurasian, and South Asian mtDNA lineages in Yemen. Cerný V et al Am J Phys Anthropol. 2008 Jun;136(2):128-37.
Yenner Synch Synch Synch SynchRes <td>Yemeni in West of Sana'a, Yemen</td> <td>n/a</td> <td>n/a</td> <td>n/a</td> <td>n/a</td> <td>4.48%</td> <td>67</td> <td>Regional differences in the distribution of the sub-Saharan, West Eurasian, and South Asian mtDNA lineages in Yemen. Cerný V et al Am J Phys Anthropol. 2008 Jun;136(2):128-37.</br></td>	Yemeni in West of Sana'a, Yemen	n/a	n/a	n/a	n/a	4.48%	67	Regional differences in the distribution of the sub-Saharan, West Eurasian, and South Asian mtDNA lineages in Yemen. Cerný V et al
Yenenisnan	Yemeni in South of Sana'a, Yemen	n/a	n/a	n/a	n/a	13.96%	43	Regional differences in the distribution of the sub-Saharan, West Eurasian, and South Asian mtDNA lineages in Yemen. Cerný V et al Am J Phys Anthropol. 2008 Jun;136(2):128-37.
Indian Tanili In Si Lankan/aSinlaka <th< td=""><td>Yemenis</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>8.64%</td><td>185</td><td>Regional differences in the distribution of the sub-Saharan, West Eurasian, and South Asian mtDNA lineages in Yemen. Cerný V et al Am J Phys Anthropol. 2008 Jun;136(2):128-37.</td></th<>	Yemenis	n/a	n/a	n/a	n/a	8.64%	185	Regional differences in the distribution of the sub-Saharan, West Eurasian, and South Asian mtDNA lineages in Yemen. Cerný V et al Am J Phys Anthropol. 2008 Jun;136(2):128-37.
Muslims in Sri Lankan/a </td <td>Indian Tamils in Sri Lanka</td> <td>n/a</td> <td>n/a</td> <td>n/a</td> <td>n/a</td> <td>n/a</td> <td>22</td> <td>A study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.</td>	Indian Tamils in Sri Lanka	n/a	n/a	n/a	n/a	n/a	22	A study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.
Vedda in Sri Lankan/an/an/an/an/aaaA study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.Malay in Sri Lankan/an/an/an/aaaA study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.Sinhales in Sri Lankan/an/an/an/aaaA study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.Yemenis Ti Lankan/an/an/an/a1.7%60A study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.Yemenis Ti Jikstann/an/an/an/a1.7%60A study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.Yemenis Ti Jikstann/an/an/a0.9%1.15Ethiopian mitochondrial DNA heritage: tracking gene flow across and around the gate of tears. Kivisil T et al Am J Hum Genet. 2007 Nov;81(5):1025-41.Kurdsn/an/an/a1.2%2.3%44Phylogeog	Muslims in Sri Lanka	n/a	n/a	n/a	n/a	n/a	30	A study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.
Nalay in Sri Lankan/an/an/an/an/aaA study of genetic polymorphisms in mitochondrial DNA hypervariable regions 1 and 1 of the five major ethnic groups Ransinghe R et al Leg Med (Tokyo). 2015 May 27.Sinhalese in Sri Lankan/an/an/a1.7%60A study of genetic polymorphisms in mitochondrial DNA hypervariable regions 1 and 1 of the five major ethnic groups and Vedda population in Sri Lanka. Ransinghe R et al Leg Med (Tokyo). 2015 May 27.Yenenisn/an/an/a0.9%115Ethiopian mitochondrial DNA heritage: tracking gene flow across and around the gate of tears. Kivisial T et al Am 1 Hum Genet: 2004 Nov:75(5):752-70. Epub 2004 Sep 27.Tajikstann/an/an/a2.3%44Phylogographic analysis of mitochondrial DNA in northern Asian populations. Derenko M et al Am 1 Hum Genet: 2004 Nov:75(5):752-70. Epub 2004 Sep 27.Furdisn/an/an/a2.3%44Phylogographic analysis of mitochondrial DNA in northern Asian populations. Derenko M et al 	Vedda in Sri Lanka	n/a	n/a	n/a	n/a	n/a	30	A study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.
Sinhalese in Sri Lankan/an/an/an/a1.7%60A study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.Yemenisn/an/an/a0.9%115Ethiopian mitochondrial DNA heritage: tracking gene flow across and around the gate of tears. Kivisil T et al Am J Hum Genet. 2004 Nov;75(5):752-70. Epub 2004 Sep 27.Tajikstann/an/an/a2.3%44Perenko M et al Am J Hum Genet. 2007 Nov;81(5):1025-41.Kurdsn/an/an/a12%25Perenko M et al Am J Hum Genet. 2007 Nov;81(5):1025-41.Persiansn/an/an/a13.4%82Pervenko M et al Am J Hum Genet. 2007 Nov;81(5):1025-41.Druze (Non-jewish)n/an/an/a13.4%82Pervenko M et al Am J Hum Genet. 2007 Nov;81(5):1025-41.Druze (Non-jewish)n/an/an/a13.4%82Pervenko M et al 	Malay in Sri Lanka	n/a	n/a	n/a	n/a	n/a	30	A study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.
Yemnisn/a <th< td=""><td>Sinhalese in Sri Lanka</td><td>n/a</td><td>n/a</td><td>n/a</td><td>n/a</td><td>1.7%</td><td>60</td><td>A study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.</td></th<>	Sinhalese in Sri Lanka	n/a	n/a	n/a	n/a	1.7%	60	A study of genetic polymorphisms in mitochondrial DNA hypervariable regions I and II of the five major ethnic groups and Vedda population in Sri Lanka. Ranasinghe R et al Leg Med (Tokyo). 2015 May 27.
Tajikstann/an/an/an/a2.3%44Phylogeographic analysis of mitochondrial DNA in northern Asian populations. Derenko M et al An Hum Genet. 2007 Nov;81(5):1025-41.Kurdsn/an/an/an/a12%25Phylogeographic analysis of mitochondrial DNA in northern Asian populations. Derenko M et al An Hum Genet. 2007 Nov;81(5):1025-41.Persiansn/an/an/a12%25Phylogeographic analysis of mitochondrial DNA in northern Asian populations. M Hum Genet. 2007 Nov;81(5):1025-41.Druze (Non-jewish)n/an/an/a13.4%82Phylogeographic analysis of mitochondrial DNA in northern Asian populations. Derenko M et al Am Hum Genet. 2007 Nov;81(5):1025-41.Druze (Non-jewish)n/an/an/an/a1.3%77Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Benz DM et al And DM et al Phylogeographic analysis of nitochondrial QNA in northern Asian populations. Derenko M et al M Hum Genet. 2007 Nov;81(5):1025-41.	Yemenis	n/a	n/a	n/a	n/a	0.9%	115	Ethiopian mitochondrial DNA heritage: tracking gene flow across and around the gate of tears. Kivisild T et al Am J Hum Genet. 2004 Nov;75(5):752-70. Epub 2004 Sep 27.
Kurds n/a n/a n/a n/a n/a n/a 12% 25 Phylogeographic analysis of mitochondrial DNA in northern Asian populations. Derenko M et al Am J Hum Genet. 2007 Nov;81(5):1025-41. Persians n/a n/a n/a 13.4% 82 Phylogeographic analysis of mitochondrial DNA in northern Asian populations. Derenko M et al Am J Hum Genet. 2007 Nov;81(5):1025-41. Druze (Non-jewish) n/a n/a n/a 13.4% 82 Phylogeographic analysis of mitochondrial DNA in northern Asian populations. Derenko M et al Am J Hum Genet. 2007 Nov;81(5):1025-41. Druze (Non-jewish) n/a n/a 1.3% 77 Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. PLoS One. 2008 Apr 30;3(4):e2062.	Tajikstan	n/a	n/a	n/a	n/a	2.3%	44	Phylogeographic analysis of mitochondrial DNA in northern Asian populations. Derenko M et al Am J Hum Genet. 2007 Nov;81(5):1025-41.
Persians n/a n/a n/a n/a 13.4% 82 Phylogeographic analysis of mitochondrial DNA in northern Asian populations. Derenko M et al Am J Hum Genet. 2007 Nov;81(5):1025-41. Druze (Non-Jewish) n/a n/a n/a 1.3% 77 Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Behar DM et al PLoS One. 2008 Apr 30;3(4):e2062.	Kurds	n/a	n/a	n/a	n/a	12%	25	Phylogeographic analysis of mitochondrial DNA in northern Asian populations. Derenko M et al Am J Hum Genet. 2007 Nov;81(5):1025-41.
Druze (Non-jewish) n/a n/a n/a n/a 1.3% 77 Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Behar DM et al PLoS One. 2008 Apr 30;3(4):e2062.	Persians	n/a	n/a	n/a	n/a	13.4%	82	Phylogeographic analysis of mitochondrial DNA in northern Asian populations. Derenko M et al Am J Hum Genet. 2007 Nov;81(5):1025-41.
	Druze (Non-Jewish)	n/a	n/a	n/a	n/a	1.3%	77	Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. Behar DM et al PLoS One. 2008 Apr 30;3(4):e2062.

Background Information for mtDNA Testing

Mitochondrial DNA (mtDNA) is DNA which is found in the mitochondria of human cells. Both males and females have mtDNA so both males and females can take the mtDNA test, but only females will pass their mtDNA down to the next generation. The strict **matrilineal** inheritance pattern of mtDNA means that your **mtDNA profile** is unique to your **Maternal lineage** and shared by all people who descended from the same **matrilineal ancestral lineage** as you. Testing your mtDNA allows you to trace your **direct Maternal ancestry** (your mother's, mother's, mother's, ... maternal line).

mtDNA is a circular loop of DNA that is approximately 16,569 base pairs in length, consisting of **3 regions: HVR1, HVR2, and Coding Regions**. The Coding region is approximately 30x larger than the HVR1 and HVR2 regions. All three regions contain markers which are important for ancestral analysis.

mtDNA Testing

The mtDNA test uses a technique called Sanger Sequencing to read the entire sequence of DNA in each region of the mtDNA tested. The **HVR1 test** sequences approximately 500 base pairs of DNA ranging from positions 16000 to 16569 in the HVR1 region of your mtDNA; the **HVR2 test** sequences approximately 400 base pairs of DNA ranging from positions 1 to 400 in the HVR2 region of your mtDNA; and the **Coding region test** sequences approximately 15,600 base pairs of DNA ranging from positions 400 to 16000 in the Coding region of your mtDNA. The three regions together (HVR1, HVR2 and Coding Regions) represent your entire mtDNA and when all three regions of your mtDNA are tested, it is considered a mtDNA "Full Sequencing" test.

You can choose to test all 3 regions of your mtDNA (mtDNA full sequencing) or you can test only a few regions at a time, starting with the HVR1 region. If you choose to test all 3 regions, you will receive a reading on all 16,569 base pairs of your mtDNA. The DNA sequence for each region tested is provided to you in your mtDNA test report. Your mtDNA sequencing results are also compared to a reference sequence called "rCRS" (revised Cambridge Reference Sequence) and all of the positions within your mtDNA which differ from rCRS are listed in your report.

Your unique mtDNA sequence result is known as your **mtDNA profile**. Individuals share the same mtDNA profile if their mtDNA sequences are an exact match to each other. Since mtDNA is passed down from mother to child along the direct maternal lineage, individuals who have descended from the same maternal lineage are expected to have exactly the same or very similar mtDNA profiles. If two individuals have different mtDNA profiles, it would conclusively confirm that they did not descend from the same maternal lineage. The maternal lineage, regardless of family legend.

If two individuals have a perfect match at their HVR1 and HVR2 regions, further comparison of the much larger Coding region can provide a higher stringency comparison and further resolution.

mtDNA Haplogroups

DNA studies have shown that all people living today can trace their ancestry back to common roots in Africa approximately 100,000 to 300,000 years ago. Over time, man eventually journeyed out of Africa, and in many waves of migrations which spanned tens of thousands of years, eventually populated the rest of the world. During these ancient journeys, small mutations called "SNPs" occurred randomly in their DNA. Each SNP acts as a "time-and-date stamp" which allows us to understand the approximate time and location in the journey our ancestors were when the SNP first occurred. Once a SNP occurs, it is passed down to all future generations and serves as a marker which allows us to approximate where our ancestors were at specific timepoints every few thousand years along the ancient migration route out of Africa. Today, our Y-DNA and mtDNA contains a rich collection of SNP markers, passed down to us from our ancient ancestors over thousands of years. Y-DNA SNPs are used for tracing paternal ancestry and mtDNA SNPs are used for tracing maternal ancestry.

Using SNP markers found in our mtDNA, all people living today can be plotted onto a Maternal tree of mankind called the **"mtDNA Phylogenetic Tree"**. The main branches of the tree are called **"mtDNA Haplogroups"**. The finer sub-branches of the tree are called **"mtDNA Subclades"**.

mtDNA Haplogroups are associated with different regions of the world

mtDNA Haplogroups are ancient family groups dating back tens of thousand of years. Each mtDNA Haplogroup is associated with a specific migration path leading to specific regions of the world, so once you know which mtDNA Haplogroup you belong to, you will REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL AND WITH WRITTEN APPROVAL PAGE 17 of 20

know the general geographical location of the world your Maternal ancestors came from, i.e. Asia, Europe, Americas (Native American), Africa, Middle East, Australia, etc.

Refer to the following table to view a summary of the major mtDNA Haplogroups found in different regions of the world.

Region	Major mtDNA Haplogroups found in region specified
Native Americans	A, B, C, D, X
Oceanic and Aboriginal Australians	O, P, Q, R, S
East Asian	A, B, C, D, E, F, G, M, Y, Z
South Asian (i.e. India)	G, M, W
Europe and Middle East	CZ, H, HV, HV0, I, J, JT, K, R0, T, U, V, W, X
Diverse	N, R
African	L0, L1, L2, L3, L4, L5, L6

Haplogroups pertain to ancient ancestry dating back tens of thousands of years and will not provide any information regarding recent ancestry such as what happened in the last few hundred years.

mtDNA Haplogroups can be further classified into finer sub-branches called "Subclades". Knowing your Subclade can often provide further geographical localization of your ancestry if published research on the geographical distribution of the Subclade is available.

mtDNA Haplogroup and Subclade Determination

Your mtDNA contains three regions: HVR1, HVR2 and Coding Regions. Testing **only the HVR1 and HVR2 regions** of your mtDNA, allows you to **predict the top five mtDNA Haplogroups** which you most likely belong to. Testing **all three regions** of your mtDNA (HVR1, HVR2 and Coding Regions) is required in order to conclusively **confirm which mtDNA Haplogroup** you belong to. It will also confirm your mtDNA Subclade.

Frequently Asked Questions

Will it tell me if I am Native American?

Yes, Y-DNA testing will allow you to find out if you may be Native American on your direct Paternal line and mtDNA DNA testing will allow you to find out if you may be Native American on your direct Maternal line.

If you are Native American on your **Paternal lineage**, your **Y-DNA test results** will show that you belong to **Y-DNA Haplogroup Q** or **C**. If your Y-DNA Haplogroup is NOT Q or C, it means that you are NOT Native American on your direct Paternal lineage.

If you are Native American on your **Maternal lineage**, your **mtDNA test results** will show that you belong to one of the known mtDNA Haplogroups that are found in Asians and Native Americans. Native Americans belong to **mtDNA Haplogroups A, B, C, D and X**. Cherokees belong mainly to groups B and C. If your mtDNA Haplogroup is NOT one of known Native American Haplogroups listed above, it means that you are NOT Native American on your direct Maternal lineage.

Please remember that your Y-DNA traces your Paternal line (father's father's father's.... line) and your mtDNA traces your Maternal line (mother's mother's mother's.... line). If your native ancestry is on a different line, such as your mother's father's line or your father's mother's line, you will not be able to trace that line using your own Y-DNA or mtDNA.

Will it tell me if I have Jewish Ancestry?

While there is no "Jewish" gene which is only found in Jews, there are certain Haplogroups that are strongly associated with individuals of Jewish descent.

The mtDNA Haplogroups most commonly found in Ashkenazi Jews are K (31.9%), H (20.4%), N (10.1%), J (8.1%), HV (5.8%), U (5.8%)

and T (4.8%).

The most common Y-DNA Haplogroups found in Jews are J (38%), R1b (30.7%), E (20.4%), G (9.7%), R1a (7.5%), Q (5.2%).

Together, Y-DNA Haplogroups J and E make up almost 60% of all Jews. In particular, Y-DNA Haplogroup J1 is strongly associated with Cohanim Jews. The Cohanim modal haplotype, which is strongly associated with Cohanim ancestry is as follows:

DYS393 = 12 DYS390 = 23 DYS19 = 14 DYS391 = 10 DYS388 = 16 DYS392 = 11

The "Cohanim Modal Haplotype" is found in 45% to 70% of Cohanim Jews.

Am I African? Doesn't everyone come from Africa?

DNA studies have shown that everyone originated from Africa over 150,000 years ago, but not all families stayed in Africa. Even though everyone originated from Africa, many ancient family groups "Haplogroups" migrated out of Africa to populate different parts of the world. The DNA test will tell you which Haplogroup you belong to. Your Haplogroup is associated with a specific region of the world, and not necessarily Africa. Only groups which stayed in Africa are Africans, and Africans belong to Haplogroups that are found mainly in Africa.

How can I find out about % ancestry?

Due to the manner in which Y-DNA and mtDNA are inherited, they can only trace the direct Paternal line or the direct Maternal line and cannot provide percentage of mixed ancestry from other lines.

The only marker that is inherited from multiple lines is Autosomal DNA. A person's Autosomal DNA is scrambled DNA from multiple lines so the information provided cannot pinpoint the ancestry a specific lineage. It can only provide a % of the overall mixture.

Can DNA ancestry testing tell me a date or specific city?

No. That is impossible. No DNA test can do that. There are no DNA markers that are specific to an exact date or city.

Can mtDNA tell me a specific country or race?

mtDNA testing can tell you which "Haplogroup" you belong to. Due to admixture, there are no DNA types which are exclusive to only one country. However, there are DNA types which are found in greater frequency in a certain country. Once you find out which Haplogroup and Subclade you belong to, you can find out which countries have the highest concentration of people with your genetic type.

Can mtDNA give me names?

No. mtDNA can be used to search for names of matches, but it cannot give you a name.

Will it tell me the general region of the world my ancestors came from?

Yes. When you test your mtDNA, you will find out which Haplogroup you belong to. Different Haplogroups are found specifically in different regions of the world.

Which line will mtDNA trace?

Maternal line (mother's mother's mother's.... line).

Surprises or lack of surprises with results?

Examples of some common types of questions:

I am European but my test results show that I am Native American/Asian, why?

I know I am European and the test shows that I am European, I didn't learn anything I didn't already know.

I am African American but my results show that I am South Asian, why?

Family legend indicates that I am Native American but my results indicate European, why?

DNA testing will give you the truth about your ancestry. For some, it will confirm what you already know or suspect. For others, it will bring completely surprising and shocking results that contradict what was previously known, and yet for others, it will confirm or reject family legends. The laboratory has absolutely no control over what your results will be, but it can guarantee that the test will show you

what you really are, regardless of whether the results are a surprise, shock, disappointment, or confirmation.

Certificate of mtDNA HVR1 Testing

This is to certify that

Brian Nicholas Rossiter

has sequenced the HVR1 region of his mtDNA. The following mtDNA profile has been obtained through mtDNA sequencing analysis.

			//////		HVR-1 See	quence				
16001	ATTCTAATTT	AAACTATTCT	CTGTTCTTTC	ATGGGGAAGC	AGATTTGGGT	GCCACCCAAG	TATTGACTCA	CCCATCAACA	ACCGCTATGT	ATTTCGTACA
6101	TTACTGCCAG	CCACCATGAA	TATTGCACGG	TACCATAAAT	ACTTGACCAC	CTGTAGTACA	TAAAAACCCA	ATCCACATCA	AAACCCCCTC	CCCATGCTTA
6201	CAAGCAAGTA	CAGCAATCAA	CCCTCAACTA	TCACACATCA	ACTGCAACTC	CAAAGCCACC	CCTCACCCAC	TAGGATACCA	ACAAACCTAC	CCATCTTTAA
6301	CAGCACATAG	TACATAAAGC	CATTTACCGT	ACATAGCACA	TTACAGTCAA	ATCCCTTCTC	GTCCCCATGG	ATGACCCCCC	TCAGATAGGG	GTCCCTTGAC
6401	CACCATCCTC	CGTGAAATCA	ATATCCCGCA	CAAGAGTGCT	ACTCTCCTCG	CTCCGGGCCC	ATAACACTTG	GGGGTAGCTA	AAGTGAACTG	TATCCGACAT
6501	CTGGTTCCTA	CTTCAGGGCC	ATAAAGCCTA	AATAGCCCAC	ACGTTCCCCT	TAAATAAGAC	ATCACGATG			
7777			HVR-1 Q	ualified Caml	oridge Refere	nce Sequence	e (rCRS) varia	ations		////
Nucleotide Position		Region		Va	riant Type		Nucleoti	de Change		
5051 A:	>G, 16126 T>C,	16294 C>T, 1	6296 C>T, 163	804 T>C, 1651	9 T>C	/////~				>//////

Individuals share the same mtDNA haplotype if their mtDNA profiles are an exact match to each other. Individuals who have descended from the same maternal lineage will have exactly the same mtDNA profile. If two individuals have completely different mtDNA profiles, it will conclusively confirm that they did not descend from the same maternal lineage, regardless of written family history.

Certificate of mtDNA HVR2 Testing

This is to certify that

Brian Nicholas Rossiter

has sequenced the HVR2 region of his mtDNA. The following mtDNA profile has been obtained through mtDNA sequencing analysis.

	HVR-2 Sequence												
00001	GATCACAGGT CTATCACCCT	ATTAACCACT CACGGGAGC	T CTCCATGCAT TTGGTATTTT	CGTCTGGGGG GTGTGC	ACGC GATAGCATTG CGAGACGCTG								
00101	GAGCCGGAGC ACCCTATGTC	GCAGTATCTG TCTTTGATT	C CTGCCTCATC CTATTATTTA	TCGCACCTAC GTTCAA	TATT ACAGGCGAAC ATACTTACTA								
00201	AAGTGTGTTA ATTAATTAAT	GCTTGTAGGA CATAATAAT	A ACAATTGAAT GTCTGCACAG	CCGCTTTCCA CACAGA	CATC ΑΤΑΑCΑΑΑΑΑ ΑΤΤΤCCACCA								
00301	AACCCCCCCCT CCCCCCGCT	TC TGGCCACAGC ACTTAAA	CAC ATCTCTGCCA AACCCCAA	AA ACAAAGAACC CTAA	CACCAG CCTAACCAGA TTTCAAATTT								
		HVR-2 Qualified Can	nbridge Reference Sequence	e (rCRS) variations									
	Nucleotide Position	Region	Va	riant Type	Nucleotide Change								
73 A>G,	263 A>G, 309 C>C*, 315 C>0	C*											

Individuals share the same mtDNA haplotype if their mtDNA profiles are an exact match to each other. Individuals who have descended from the same maternal lineage will have exactly the same mtDNA profile. If two individuals have completely different mtDNA profiles, it will conclusively confirm that they did not descend from the same maternal lineage, regardless of written family history.

Certificate of mtDNA Coding Region Testing

This is to certify that

Brian Nicholas Rossiter

has sequenced the Coding Region region of his mtDNA. The following mtDNA profile has been obtained through mtDNA sequencing analysis.

$ \ge $		$\overline{)}$	$\overline{\gamma}\overline{\gamma}$				Co	oding	Regio	on See	quenc	:e					TL		
401 601	GCAATACACT NNNAATGTTT	AGACGGGCTC	ACATCACCCC	ATAAACAAAT	AGGTTTGGTC	CCCACTCCCA	TACTACTAAT	TAGTAAGATT	ACACCCCCGC	GCATCCTACC	CAGCACACAC TCCAGTGAGT	ACACCGCTGC	AATCACCATA	ATCAAAAGGG	ACCAAACCCC	AAAGACACCC AGCACGCAGC	AATGCAGCTC	ATGTAGCTT	GCCTAGCCA
901 . 901 .	ACCCCCACGG GAAACAGCAG CCAGTTGACA CAAAATAGAC	TGATTAACCT	GCTTTAACAT	ACGAAAGTTT ATCTGAACAC	AACTAAGCTA	TACTAACCCC	AGGGTTGGTC	TACCCCACTA	CAGCCACCGC	GGTCACACGA	CAGTTAAATC	TCAATAGAAA	CCGGCGTAAA	GAGTGTTTTA	GATCACCCCC	AACTCAAAAGG	AGCTAAAACT	GCTTCATATO	GTAAAAAAA CCTCTAGAG
01	AGCCTGTTCT GTAATCGATA	AACCCCGATC	AACCTCACCA	CCTCTTGCTC	AGCCTATATA	CCGCCATCTT	CAGCAAACCO	TGATGAAGGC	TACAAAGTAA	GCGCAAGTAC	CCACGTAAAG	ACGTTAGGTC	AAGGTGTAGC	CCATGAGGTO	GCAAGAAATG	GGCTACATTT	TCTACCCCAG	AAAACTACGA	TAGCCCTT
i/	CCAGAGTGTA GCTTAACACA	AAGCACCCAA	CTTACACTTA	GGAGATTTCA	ACTTAACTTG	ACCGCTCTGA	GCTAAACCTA	GCCCCAAACC	CACTECACET	TACTACCAGA	CAACCTTAGE	CAAACCATTT	ACCCAAATAA	AGTATAGGCG	ATAGAAAATTG	AAACCTGGCG	CAATAGATAT	AGTACCGCA	GGGAAAGA
1	AAAAATTATA ACCAAGCATA	ATATAGCAAG	GACTAACCCC	TATACCTTCT	GCATAATGAA	TTAACTAGAA	ATAACTTTGC	AAGGAGAACC	AAAGCTAAGA	CCCCCGAAAC	CAGACGAGCT	ACCTAAGAAC	AGCTAAAAGA	GCACACCCGT	CTATGTAGCA	AAATAGTGGG	AAGATTTATA	GGTAGAGGCO	ACAAACCTA
i	GCGTTCAAGC TCAACACCCA	СТАССТАААА	AATCCCAAAC	ATATAACTGA	ACTCCTCACA	CCCAATTGGA	CCAATCTATC	ACCCTATAGA	AGAACTAATG	TTAGTATAAG	TAACATGAAA	ACATTCTCCT	CCGCATAAGC	CTGCGTCAGA	TTAAAACACT	GAACTGACAA	TTAACAGCCC	AATATCTAC	ATCAACCA
1	ATCACTTGTT CCTTAAATAG	GGACCTGTAT	GAATGGCTCC	ACGAGGGTTC	AGCTGTCTCT	TACTTTTAAC	CAGTGAAATT	GACCTGCCCG	TGAAGAGGCG	GGCATGACAC	AGCAAGACGA	GAAGACCCTA	TGGAGCTTTA	ATTTATTAAT	GEAAACAGTA	CCTAACAAAC	CCACAGGTCC	TAAACTACCA	AGGTAGCA
1	AAAAATTTCG GTTGGGGCGA	CCTCGGAGCA	GAACCCAACC	TCCGAGCAGT	ACATGCTAAG	ACTTCACCAG	TCAAAGCGAA	CTACTATACT	CAATTGATCC	AATAACTTGA	CCAACGGAAC	AAGTTACCCT	AGGGATAACA	GCGCAATCCT	ATTCTAGAGT	CCATATCAAC	AATAGGGTTT	ACGACCTCGA	TGTTGGATO
i	ATACCCACAC CCACCCAAGA	ACAGGGTTTG	TTAAGATGGC	AGAGCCCGGT	AAAGTCCTAC	AACTTAAAAC	TTTACAGTCA	GAGGTTCAAT	TCCTCTTCTT	AACAACATAC	CCATGGCCAA	CCTCCTACTC	CTCATTGTAC	CCATTCTAAT	CGCAATGGCA	TTCCTAATGC	TTACCGAACG	AAAAATTCT	GGCTATAT
1	AACTACGCAA AGGCCCCAAC	GTTGTAGGCC	CCTACGGGCT	ACTACAACCC	TTCGCTGACG	CCATAAAACT	CTTCACCAAA	GAGCCCCTAA	AACCCGCCAC	ATCTACCATC	ACCCTCTACA	TCACCGCCCC	GACCTTAGCT	CTCACCATCO	CTCTTCTACT	ATGAACCCCC	CTCCCCATAC	CCAACCCCCT	GGTCAACC
i	TATCACAACA CAAGAACACC	TCTGATTACT	CCTGCCATCA	TGACCCTTGG	CCATAATATG	ATTTATCTCC	ACACTAGCAG	AGACCAACCG	AACCCCCTTC	GACCTTGCCG	AAGGGGAGTC	CGAACTAGTC	TCAGGCTTCA	ACATCGAATA	CGCCGCAGGC	CCCTTCGCCC	TATTCTTCAT	AGCCGAATAC	ACAAACATT
1	TTATAATAAA CACCCTCACC GCATTACTTA TATGACATGT	ACTACAATCT	TCCTAGGAAC ATTACAATCT	AACATATGAC	GCACTCTCCC	TAAGAAATAT	GTCTGATAAA	AGAGTTACTT	AGACCCTACT	TCTAACCTCC	GCTTAAACCC	GAATTCGAAC	AGCATACCCC	GAATCGAACC	ACGACCAACT	CATACACCTC	CTATGAAAAA TCTCCGTGCC	ACTTCCTACO	
1	AAGTAAGGTC AGCTAAATAA	GCTATCGGGC	CCATACCCCG	AAAATGTTGG	TTATACCCTT	CCCGTACTAA	TTAATCCCCT	GGCCCAACCC	GTCATCTACT	CTACCATCTT	TGCAGGCACA	CTCATCACAG	CGCTAAGCTC	GCACTGATT	TTTACCTGAG	TAGGCCTAGA	AATAAACATG	CTAGCTTTT	TTCCAGTTC
1	TTCACTTCTG AGTCCCAGAG	GTTACCCAGA	GEACECETET	GACATCCGGC	CTGCTTCTTC	TCACATGACA	AAAACTAGCC	CCCATCTCAA	TCATATACCA	AATCTCTCCC	TCACTAGACG	TAAGCCTTCT	CCTCACTCTC	TCAATCTTAT	CCATCATAGC	AGGCAGTTGA	GGTGGATTAA	ACCAAACCCA	GCTACGCA
1	ATCTTAGCAT ACTCCTCAAT	TACCCACATA	GGATGAATAA	TAGCAGTTCT	ACCGTACAAC	CCTAACATAA	CCATTCTTAA	TTTAACTATT	TATATTATCC	TAACTACTAC	CGCATTCCTA	CTACTCAACT	TAAACTCCAG	CACCACAACC	CTACTACTAT	CTCGCACCTG	AAACAAGCTA	ACATGACTA	CACCCTTA
i	TAAAAATAAA ATGACAGTTT	GAACATACAA	AACCCACCCC	ATTCCTCCCC	ACACTCATCG	CCCTTACCAC	GCTACTCCTA	CCTATCTCCC	CTTTTATACT	AATAATCTTA	TAGAAATTTA	GGTTAAATAC	AGACCAAGAG	CCTTCAAAGC	CCTCAGTAAG	TTGCAATACT	TAATTTCTGT	AACAGCTAAC	GACTGCAA
1	CCCCACTCTG CATCAACTGA TTCAATATGA AAATCACCTC	ACGCAAATCA GGAGCTGGTA	AAAAGAGGCC	TTAAGCTAAG	CCCTTACTAG	ACCAATGGGA	GCTTCACTCA	GCCATTTTAC	GTTAACAGCT CTCACCCCCA	AAGCACCCTA	ATCAACTGGC	ACTATTCTAC	ACAAACCACA	GCCGGGAAAA	AAGGCGGGGAG	AAGCCCCGGC	AGGTTTGAAG	TGGAGTCCTA	GAATTTGC
	TAAGCCTCCT TATTCGAGCC	GAGCTGGGCC	AGCCAGGCAA	CCTTCTAGGT	AACGACCACA	TCTACAACGT	TATCGTCACA	GCCCATGCAT	TIGTAATAAT	CTTCTTCATA	GTAATACCCA	TCATAATCGG	AGGCTTTGGC	AACTGACTAG	TTCCCCTAAT	AATCGGTGCC	CCCGATATGG	CGTTTCCCCC	CATAAACA
1	AACAATTATC AATATAAAAC	CCCCTGCCAT	AACCCAATAC	CAAACGCCCC	TCTTCGTCTG	ATCCGTCCTA	ATCACAGGTTG	TCCTACTTCT	CCTATCTCTC	CCAGGGGAACTA	CTGCTGGCAT	CACTATACTA	CTAACAGACC	GCAACCTCAA	CACCACCTAG	TTCGACCCCG	CCGGAGGAGG	AGACCCCATT	CTATACCA
1	ACCTATICIG ATTITICGGT	CACCCTGAAG	TITATATICT	TATECTACCA	GGCTTCGGAA	TAATCTCCCA	TATTGTAACT	TACTACTCCG	GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ACCATTTGGA	TACATAGGTA	TGGTCTGAGC	TATGATATCA	ATTGGCTTCC	TAGGGTTTAT	CGTGTGAGCA	CACCATATAT	TTACAGTAGO	AATAGACGT
1	ACTACACGAC ACGTACTACG	TTGTAGCTCA	CTTCCACTAT	GTCCTATCAA	TAGGAGCTGT	ATTTGCCATC	ATAGGAGGCT	TCATTCACTG	ATTTCCCCTA	TTCTCAGGCT	ACACCCTAGA	CCAAACCTAC	GCCAAAATCC	ATTTCACTAT	CATATTCATC	GGCGTAAATC	TAACTTTCTT	CCCACAACAO	TTTCTCGGG
	TATCCGGAAT GCCCCGACGT CCACCCTACC ACACATTCGA	AGAACCCGTA	ACCCCGATGC	ATACACCACA CTAGACAAAA	TGAAACATCC	TATCATCTGT	AGGCTCATTC	TTCAAGCCAA	CAGCAGTAAT	ATTAATAATT	TTCATGATTT	GAGAAGCCTT	AACCATTCGAAG	CGAAAAGTCC	TAATAGTAGA	AGAACCCTCC	ATAAACCTGG	AGTGACTATA	ACATGCAG
1	CAAGTAGGTC TACAAGACGC	TACTTCCCCT	ATCATAGAAG	AGCTTATCAC	CTTTCATGAT	CACGCCCTCA	TAATCATTTT	CCTTATCTGC	TTCCTAGTCC	TGTATGCCCT	TTTCCTAACA	CTCACAACAA	AACTAACTAA	TACTAACATO	TCAGACGCTC	AGGAAATAGA	AACCGTCTGA	ACTATCCTG	CCGCCATCA
2	ACAATCGAGT AGTACTCCCG	ATTGAAGCCC	CATCCTTAL	ATAACAGACG	TCACAAGACGA	TCTTGCACTC	ATGAGCTGTC	CCCACATTAG	GCTTAAAAAAC	AGATGCAATT	CCCGGACGTC	TAAACCAAAC	CACTITCACC	GCTACACGAC	CGGGGGGTATA	CTACGGTCAA	TGCTCTGAAA	TCTGTGGAG	AAACCACAC
	TTCATGCCCA TCGTCCTAGA	ATTAATTCCC	CTAAAAATCT	TTGAAATAGG	GCCCGTATTT	ACCCTATAGC	ACCCCCTCTA	CCCCCTCTAG	AGCCCACTGT	AAAGCTAACT	TAGCATTAAC	CTTTTAAGTT	AAAGATTAAG	AGAACCAACA	CCTCTTTACA	GTGAAATGCC	CCAACTAAAT	ACTACCGTAT	GGCCCACCA
i	ATTTCCCCCT CTATTGATCC	CCACCTCCAA	ATATCTCATC	AACAACCGAC	TAATCACCAC	CCAACAATGA	CTAATCAAAC	TAACCTCAAA	ACAAATAATA	ACCATACACA	ACACTAAAGG	ACGAACCTGA	TCTCTTATAC	TAGTATCCTT	AATCATTTTT	ATTGCCACAA	CTAACCTCCT	CGGACTCCTC	CCTCACTCA
1	TTACACCAAC CACCCAACTA CGCCTAACCG CTAACATTAC	TCTATAAACC	TAGCCATGGC	ACCTAATTGG	TGAGCGGGGCG	CAGTGATTAT	AGGCTTTCGC	CCTTCCCTCT	AAAATGCCCT	AGCCCACTTC	TTACCACAAG	GCACACCTAC	TAGAAATCGC	CCCATACTAG	ATCCAAGCCT	AACCATCAGC	ACTTCTAGTA	AACCAATAGO	CCTGGCCG1 TGCACGAC/
1	CACATAATGA CCCACCAATC	ACATGCCTAT	CATATAGTAA	AACCCAGCCC	ATGACCCCTA	ACAGGGGGCCC	TCTCAGCCCT	CCTAATGACC	TCCGGCCTAG	CCATGTGATT	TCACTTCCAC	TCCATAACGC	TCCTCATACT	AGGECTACTA	ACCAACACAC	TAACCATATA	CCAATGATGG	CGCGATGTA	CACGAGAAA
1	TAAACACATC CGTATTACTC	GCATCAGGAG	TATCAATCAC	CTGAGCTCAC	CATAGTETAA	TAGAAAAACAA	CCGAAACCAA	ATAATTCAAG	CACTGCTTAT	TACAATTTTA	CTGGGTCTCT	ATTTTACCCT	CCTACAAGCC	TCAGAGGGGCA	TCGAGTCTCC	CTTCACCATT	TCCGACGGCA	TCTACGGCTO	AACATTTT
1	GTAGCCACAG GCTTCCACGG	ACTTCACGTC	ATTATTGGCT	CAACTITICCT	CACTATCTGC	TTCATCCGCC	AACTAATATT	TCACTITACA	TECAAACATC	ACTITGGCTT	CGAAGCCGCC	GCCTGATACT	GGCATTTTGT	AGATGTGGTT	TGACTATTTC	TGTATGTCTC	CATCTATTGA	TGAGGGTCTT	ACTOTITI
i	GCGTCCCTTT CTCCATAAAA	TTCTTCTTAG	TAGCTATTAC	CTTCTTATTA	TTTGATCTAG	AAATTGCCCT	CCTTTTACCC	CTACCATGAG	CCCTACAAAC	AACTAACCTG	CCACTAATAG	TTATGTCATC	CCTCTTATTA	ATCATCATCO	TAGCCCTAAG	TCTGGCCTAT	GAGTGACTAC	AAAAAGGATT	AGACTGAAG
1	GAATIGGTAT ATAGTITAAA TACTCTCATA ACCCTCAACA	CCCACTCCCT	CTTAGCCAAT	ATTGTGCCTA	TTGCCATACT	AGTETTTGCC	GCCTGCGAAG	CAGCGGTGGG	CCTAGCCCTA	CTAGTCTCAA	TCTCCAACAC	ATATGGCCTA	GACTACGTAC	ATAACCTAAA	CCTACTCCAA	TGCTAAAACT	AGGAATAATA	ACAATTATAT	TACTACCAG
1	GACATGACTT TCCAAAAAAAC	ACATAATTTG	AATCAACACA	ACCACCCACA	GCCTAATTAT	TAGCATCATC	CCTCTACTAT	TTTTTTAACCA	AATCAACAAC	AACCTATTTA	GCTGTTCCCC	AACCTTTTCC	TCCGACCCCC	TAACAACCCC	CCTCCTAATA	CTAACTACCT	GACTCCTACC	CCTCACAATO	ATGGCAAGO
i	TACTTCCTAT TCTACACCCT	AGTAGGCTCC	CTTCCCCTAC	TCATCGCACT	GATTTACACT	CACAACACCC	TAGGCTCACT	AAACATTCTA	CTACTCACTC	TCACTGCCCA	AGAACTATCA	AACTCCTGAG	CCAACAACTT	AATATGACTA	GCTTACACAA	TAGCTTTTAT	AGTAAAGATA	CCTCTTTAC	GACTCCACT
1	ATGACTCCCT AAAGCCCATG	TCGAAGCCCC	CATEGETGGG	TCAATAGTAC	TTGCCGCAGT	ACTETTAAAA	CTAGGCGGCT	ATGGTATAAT	ACGCCTCACA	CTCATTCTCA	ACCCCCTGAC	AAAACACATA	GCCTACCCCT	TECTTGTACT	ATCCCTATGA	GGCATAATTA	TAACAAGCTC		CGACAAACA
i	CTTCAAACTC TGCTCCCACT	AATAGCTTTT	TGATGACTTC	TAGCAAGCCT	CGCTAACCTC	GCCTTACCCC	CCACTATTAA	CCTACTGGGA	GAACTCTCTG	TGCTAGTAAC	CACGTTCTCC	TGATCAAATA	TCACTCTCCT	ACTTACAGGA	CTCAACATAC	TAGTCACAGC	CCTATACTCC	CTCTACATAT	TTACCACA
	ACAATGGGGC TCACTCACCC	GAACTGCTAA		CONTRACTOR	CACGAGAAAA	CACCCTCATG	TTCATACACC	CAGCTATICA	TETECTECTA	GCCCCAAAAA	TTTTGGTGCA	TACCGGGTTT	AAAGTAATAA	AATATAGTTT	AACCAAAAACA	TCAGATTGTG	AATCTGACAA	AATTCCCCCC	
	CCCTCGTTAA CCCTAACAAA	AAAAACTCAT	ACCCCCATTA	TGTAAAATCC	ATTGTCGCAT	CCACCTTTAT	TATCAGTCTC	TTCCCCACAA	CAATATTCAT	GTGCCTAGAC	CAAGAAGTTA	TTATCTCGAA	CTGACACTGA	GCCACAACCO	AAACAACCCA	GCTCTCCCTA	AGCTTCAAAC	TAGACTACTI	CTCCATAAT
i i	CAGTTGATGA TACGCCCGAG	CAGATGCCAA	CACAGCAGCC	ATTCAAGCAA	TCCTATACAA	CCGTATCGGC	GATATCGGTT	TCATCCTCGC	CTTAGCATGA	TTTATCCTAC	ACTECAACTE	ATGAGACCCA	CAACAAATAG	CCCTTCTAAA	CAACIGIICA	AGCCTCACCC	CACTACTAGG	CCTCCTCCT	GCAGCAGCA
1	GCAAATCAGC CCAATTAGGT	CTCCACCCCT	GACTCCCCTC	AGCCATAGAA	GGCCCCACCC	CAGTCTCAGC	CCTACTCCAC	TCAAGCACTA	TAGTTGTAGC	AGGAATCTTC	TTACTCATCC	GCTTCCACCC	CCTAGCAGAA	AATAGCCCAC	TAATCCAAAC	TCTAACACTA	TGCTTAGGCG	CTATCACCAG	TCTGTTCGC
/	TATTCGAAAA ATAGGAGGAC	TACTCAAAAAC	CATACCTCTC	ACTTCAACCT	CCCTCACCAT	TGGCAGCCTA	GCATTAGCAG	GAATACCTTT	CCTCACAGGT	TTCTACTCCA	AAGACCACAT	CATCGAAACC	GCAAACATAT	CATACACAAA	CGCCTGAGCC	CTATCTATTA	CTCTCATCGC	TACCTCCCTC	ACAAGCGCO
	ATAGCACTCG AATAATTCTT ACAGCCCTCG CTGTCACTTT	CTCACCCTAA	CAGGTCAACC	TCGCTTCCCC	ACCCTTACTA	ACATTAACGA	AAATAACCCC	ACCCTACTAA CCCACTATGC	ACCCCATTAA	ACGCCTGGCA	GEEGGAAGEE	TATTCGCAGG	ATTTCTCATT TCACACACCG	ACTAACAACA	TTTCCCCCGC	ATCCCCCTTC	CAAACAACAA		CCTAAAACT
Ĺ	AACCTGACTA GAAAAGCTAT	TACCTAAAAC	AATTTCACAG	CACCAAATCT	CCACCTCCAT	CATCACCTCA	ACCCAAAAAG	GCATAATTAA	ACTITACTIC	CTCTCTTTCT	TCTTCCCACT	CATCCTAACC	CTACTCCTAA	TCACATAACO	TATTCCCCCG	AGCAATCTCA	ATTACAATAT	ATACACCAAO	AAACAATG
Ľ	ACTCACCAAG ACCTCAACCC	CTGACCCCCA	TGCCTCAGGA	TACTCCTCAA	TAGCCATCGC	TGTAGTATAT	CCAAAGACAA	CCATCATTCC	CCCTAAATAA	ATTAAAAAAA	CTATTAAACC	CATATAACCT	CCCCCAAAAT	TCAGAATAAT	AACACACCCG	ACCACACCGC	TAACAATCAA	TACTAAACCO	CCATAAATA
2	GAGAAGGCTT AGAAGAAAAC	CCCACAAACC	CCATTACTAA	ACCCACACTC	AACAGAAACA	AAGCATACAT	CATTATTCTC	GCACGGACTA	CAACCACGAC	CAATGATATG	AAAAACCATC	GTTGTATTTC	AACTACAAGA	ACACCAATGA	CCCCAATACG	CAAAATTAAC	CCCCTAATAA	AATTAATTAA	CCACTCATT
1	TGGCGCCTCA ATATTCTTTA	TCTGCCTCTT	CCTACACATC	GGGCGAGGCC	TATATTACGG	ATCATTTCTC	TACTCAGAAA	CCTGAAACAT	CGGCATTATC	CTCCTGCTTG	CAACTATAGC	AACAGCCTTC	ATAGGCTATG	TCCTCCCGTG	AGGCCAAATA	TCATTCTGAG	GGGCCACAGT	AATTACAAAG	TTACTATCO
	CCATCCCATA CATTGGGACA	GACCTAGTTC	AATGAATCTG	AGGAGGCTAC	TCAGTAGACA	GTCCCACCCT	CACACGATTC	TTTACCTTTC CTCACCAGAC	ACTTCATCTT	GCCCTTCATT	ATTGCAGCCC	TAGCAGCACT	CCACCTCCTA	TTCTTGCACG	AAACGGGATC	AAACAACCCC	CTAGGAATCA	CCTCCCATTO	GATECOTE
1	TAACAAGCTA GGAGGCGTCC	TTGCCCTATT	ACTATCCATC	CTCATCCTAG	CAATAATCCC	CATCCTCCAT	ATATCCAAAC	AACAAAGCAT	AATATTTCGC	CCACTAAGCC	AATCACTTTA	TTGACTCCTA	GCCGCAGACC	TCCTCATTCT	AACCTGAATC	GGAGGACAAC	CAGTAAGCTA	CCCTTTTAC	ATCATTGG
/	AAGTAGLATE EGIACIATAE		Coding	a Rea	ion O	ualifi	ed Ca	mbri	dae R	efere	nce S	eque	nce (rCRS	varia	ations			CAAAGCTA
7	Nucleotide	Posi	tion		$\overline{//}$	Re	nion	1111			Var	iant '	Tyne	111		Nuc	entid	le Chi	ande
						/ / יייכ	.9.01						. , PC			1100			
H																			

Individuals share the same mtDNA haplotype if their mtDNA profiles are an exact match to each other. Individuals who have descended from the same maternal lineage will have exactly the same mtDNA profile. If two individuals have completely different mtDNA profiles, it will conclusively confirm that they did not descend from the same maternal lineage, regardless of written family history.